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Abstract '

Abstract

The structure of the Zr-isotopes with proton number (Z=40), and with neutron’s number
N=40,42,44,46,48,52, 54,56,58,60,62,64,66, and 68 have been studied theoretically using the
framework of the interacting boson models IBM-1 and IBM-2. The symmetry limits of the
considered nuclei were studied using the energy of the second excited state relative to the first
excited state. The considered nuclei were found to be transitional in the region U(5) — SU(3)
and O(6). The properties of the lowest mixed symmetry states such as the 13;,23;, and 3}, states
are calculated by IBM-2 model in the vibrational, rotational and gamma unstable (SU(5), SU(3),
and O(6)) of Zr-isotopes and studied in detail. It was found that the mixed symmetry 17, and
37 levels are affected by the Majorana force parameters &; and ¢&; respectively, while the
parameter ¢, affects the energies of all levels which are considered to have mixed symmetry
character, and it affects strongly the 2" states, as well as controlling the sharing between
23 state and its neighbors of 2" states. It is also found that the mixed symmetry character of 17,
and 33, levels are confined to one level only in each isotope whereas the 2}, state may share the

mixed symmetry character with its neighboring levels.

In the framework of IBM-1 and IBM-2, the properties of energy level with positive parity of
the ground, beta and gamma bands were studied. In general, the calculated low-lying positive
parity energy spectra are better reproduced by the framework of IBM-2 than those of IBM-1 in
most cases. This is due to the proton-neutron degree of freedom and the absence of these states
in the IBM-1 model. The electromagnetic properties of E2 and M1 operators were investigated
and the results were analyzed. The properties of E2 operator depend explicitly on the effective
charges used in both IBM-1 and IBM-2. It is found that the different values of oy in the

framework of IBM-1 for each Zr-isotopes also different values for both ( e, and e, ) in the
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framework of IBM-2 for each Zr-isotopes are used to generate the E2 properties such as B(E2)
and Q(2") throughout all considered Zr-isotopes. On the other hand the properties of the
magnetic dipole operator have been studied only by the framework of IBM-2 because of the
absence of the M1 transitions in the IBM-1. It is found that the M1 properties clearly depend on
the g, and g, in the framework of the IBM-2. Fixed values of (g, = —0.02u, ) for all Zr-
isotopes but changes the g, for them were adopted in the calculations of IBM-2 to generate the
M1 properties such as the B(M1), Ho+ and 8(E2/MI) mixing ratios throughout these isotopes. It
is found that the percentage of F-spin is to show the full symmetric and mixed symmetry of
states. The small values of delta mixing ratios d(E2/M1) was obtained with transition from

mixed symmetry states to those of full symmetry.
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Chapter One

Introduction

The atomic nucleus is an incredibly complex system, where dozens and sometimes hundreds
of particles interact in extremely complicated ways. That is a nucleus is quantum system of
many nucleons interacting mainly by strong nuclear interaction. Each nucleon is made up of
three quarks that interact via the strong force. The residual strong force is responsible for the
short ranged attractive nuclear force that holds the nucleus together, and an additional Coulomb
interaction between protons provides a repulsive force. Theory of atomic nuclei must describe
the Structure of nucleus (distribution and properties of nuclear levels) and on the other hand
Mechanism of nuclear reactions (dynamical properties of nuclei). It is clear that with such a
complex system, a single model that describes all features of nuclei and includes all nuclear
interactions will be impossible to implement. As such, identifying the underlying symmetries,
the important degrees of freedom, and the most relevant interactions is extremely important for
understanding the general behavior of the nucleus, here we can discuss briefly the nuclear

models.

1.1 Nuclear models

1.1.1 Liquid drop model:

One of these models is liquid drop model that was the first model to describe nuclear
properties. A detailed theory of the nuclear binding, based on highly sophisticated mathematical
techniques and physical concepts, has been developed by Bruecknet and Co-Workers (1954-
1961) [1]. A much cruder model exists in which the finer features in the nuclear force are

ignored, but the strong inter-nucleon attraction is stressed [2]. This model is proposed in the
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1935 by Bohr [3], and it provides a reasonable explanation for many nuclear phenomena such
as, nuclear masses nuclear binding energy, nuclear fission, p-decay, radius, density, surface

tension and the volume energy [4].

It assumes that the nucleus might be expected to behave very much like a droplet of some
liquid in which the forces of attraction and repulsion between the particles in the liquid are
balanced. The basis of this model is on the short range of the nuclear forces, together with the

additively of the volumes and binding energies [1,2,3,4]. The essential assumptions are:

e The nucleus like a droplet is incompressible matter so that R ~ A,

e The force between nucleons is considered to be spin independent as well as charge
independent (the nuclear force is identical for every nucleon and in particular does not
depend on whether it is a neutron or a proton).

e The nuclear forces have short-range character (saturation).

For most nuclei with A > 20 according to the liquid drop model, the binding energy is well
reproduced by a semi-empirical mass formula. An excellent parameterization of the binding
energies of nuclei in their ground state was proposed in 1935 by Bethe and Weizsdcker [5]. This
formula relies on the liquid-drop analogy but also incorporates two quantum ingredients. One is
an asymmetry energy which tends to favor equal numbers of protons and neutrons. The other is
a pairing energy which favors configurations where two identical fermions are paired [4,5,6].
The mass formula of Bethe and Weizsdcker is
B(A,Z) = a,A — aA?® — a [Z2/AY3]- a. [(N — 2)°/A] + 6(A) . (1-1)
and a, as,ac ., , 0 are volume, surface, coulomb, asymmetry and pairing parameters term

respectively [4,5].
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Fig. (1-1): summary of liquid drop model treatment of the average binding energy [5,6].

1.2 The Fermi gas model

In this model, nuclei are considered to be composed of two fermion gases, a neutron gas and
a proton gas. The particles do not interact, but they are confined in a sphere which has the
dimension of the nucleus. The Fermi model is based on the quantum statistics effects on the
energy of confined fermions. The Fermi model provides a means to calculate the parameters
term a,, as and a, in the Bethe—Weizsdcker formula, directly from the density p of the nuclear
matter. According to this model, we can calculate the energy, momentum (called Fermi
momentum) and wave number for the nucleus [5,6,7,8] .

In a system of A = Z +N nucleons, the densities of neutrons and protons are respectively
no(N/A) and no(Z/A) where ny ~0.15 fm ™2 is the nucleon density. The total kinetic energy is then

[6]

E=E,+Ey=2[Z —(3r2220)2R + N (3022 20)23) (1-2)

2 2
5 2my A 2mp A
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1.3 Shell model

One important first step that was made by Jensen and Mayer was the development of the
nuclear shell model [9]. In atomic systems, a central Coulomb potential is provided by the
protons in the nucleus. Electrons are fermions, and as they are added to the system, they fill up
electron orbits. With certain specific numbers of electrons, the orbits form closed shells that no
longer interact as strongly with other atoms, or additional outer electrons. The nuclear system
was found to behave in a similar way, but unlike the Coulomb central potential that exists in the
atoms, the nuclear central potential is instead generated by the nucleons themselves. This
assumption about the formation of shells in nuclei dramatically simplifies any attempts to model
the structure of excited states in nuclei. The general energy spacing of possible proton and
neutron orbits can be roughly predicted using a three-dimensional quantum Harmonic oscillator,
an L? interaction, and a spin-orbit coupling term. Constructing a basis out of the most likely
configurations for the nucleons to occupy, and applying the relevant interactions, can in many
cases reproduce the structure of the low-lying excited states of nuclei.

The main restriction with such a model is that even though the vastly complex system of the
nucleus was dramatically simplified, it is still too complex to model nuclei with a large number
of valence nucleons. The shell model is primarily applicable to nuclei that lie near closed shells,
but as more valence nucleons are added to the system, an interesting type of behavior called
collective motion arises.

The shell model that takes into account the behavior of individual nucleons and distribution
of nucleons in the nuclear shells has been proposed to describe the stability of the magic
numbers. In the nucleus, if the number of neutron (N) or the number of proton (Z) is equal to
one of the following magic number (2, 8, 20, 28, 50, 82 and 126) or both are the magic numbers

(called doubly magic) shell model can treat it. [10,11].
4|Page



Chapter One Introduction

In the shell model, the nucleons in the nucleus form the shells (orbits) which are specified by
their own potential and quantum numbers [12.13]. The nucleons are distributed due to the Pauli
Exclusion Principle which requires that each nucleon has a unique set of quantum numbers to
describe its motion in orbit [10]. The basic assumption of the shell model is that the effects of
inter-nuclear interactions can be represented by single- particle potential [11,12]. Single particle
model is a simple case of shell model, according to which the motion of an individual nucleon is
particularly independent of that of any other nucleon, but the motion of any nucleon is governed
by attractive average potential (self-consistent potential) that is formed as a result of interaction
of the nucleon with other nucleons. This potential can be replaced as an approximation by a
central potential that changes many body problem to one body problem [9,10].

For the harmonic oscillator potential, the stable nuclei are those which have closed proton
and neutron shells, which represent the magic numbers 2, 8 and 20. To produce the other magic
numbers (28, 50, 82 and 126) it must be used by another more realistic potential, harmonic
oscillator with spin-orbit interaction. In 1949, M. G. Mayer and H. D. Jenson suggested that a
spin-orbit potential [9,10,11,12,13] should be added to the centrally symmetric potential to

generate the magic numbers (28, 50, 82, and 126). This term represents the interaction of spin of
the nucleon (5) and its orbital angular momenta (T ). The spin-orbit interaction, that is

proportional to the quantity (7.§ ), is strong comparing with the interaction between the
nucleons themselves.

The shell model can predict the stability and abundance of the magic numbers, spin and
parity of the ground states, magnetic dipole moment (i ), and Quadrupole moment. Even
through the shell model is successful to predict these properties, it has some shortcomings to

explain the following
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e The large magnitude of the nuclear Quadrupole moments.

e The spin and parity for the ground state band of the nuclei 150 < A < 190 and A > 220.

e The difference between experimental and theoretical magnetic dipole moments for some
nuclei.

e The excited states of some even-even nuclei.

1.4 Collective model

This model is explaining the structure of nuclei with even numbers of protons and neutrons
(known as even-even nuclei). Nuclei that have closed proton or neutron shells have a spherical
shape. As valence nucleons are added to the system, the shape remains spherical but becomes
softer, and vibrational structure is visible in the excited states of such nuclei. This softening of
the spherical shape is the onset of collectivity, where collective motion refers to the valence
nucleons moving together as a whole.

Excited states in nuclei decay to lower energy states via gamma-decay, where a gamma-ray
of a particular multipolarity is emitted from the nucleus. The vibrational structure that appears at
the onset of collectivity is a quadrupole oscillation around a spherical equilibrium shape, and the
transitions that occur as a vibrational state decays to a more spherical state is typically an
electric quadrupole (E2) transition. Strong transitions of this type are one of the signatures of
collective behavior.

As even more valence nucleons are added to the system, a quadrupole deformed equilibrium
shape becomes energetically favorable in nuclei. This deformed shape is associated with
rotational structure in the excited states in such nuclei. The geometric nature of the transition
from spherical to deformed makes using a geometric model a clear choice, and such a model

was developed by Bohr and Mottelson [7],
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In this model it is assumed that the outer most nucleons within the nucleus, exert a
centrifugal pressure on the surface of the nucleus, as a result of it, the nucleus may be deformed
into a permanent non spherical shape and hence, the surface may undergo oscillations due to the

liquid drip model under the effect of exerted forces on the surface [14].

—

L

<
\/

—

Spherical core 2 deformed core

Fig.(1-2) : change the spherical shape of the nucleus to non-spherical due to a centrifugal
pressure on the surface of the nucleus

As a result of the deformation, the surface of the nucleus may undergo oscillations and it
rotates about an axis perpendicular to the symmetrical axis that causes to appear the excited
states. The collective model generalizes the result of the shell model by considering the effect of
a non-spherically symmetric potential, which leads to substantial deformations for heavy nuclei
and consequently large value of electric quadrupole moments.

One of the most striking consequences of the collective model is the explanation of low —
lying excited states of heavy nuclei. There are two major types of collective motion which are
rotational motion that is a nucleus with a non-zero quadrupole moment that can have excited
levels due to rotational perpendicular to the axis of symmetry, and the vibrational motion, in
which there are modes of vibration in which the deformation of the nucleus due to the
oscillation of electric quadrupole moment oscillates about its mean value. It could be that this
mean value is very small, in which case the nucleus is oscillating between an oblate and a
prolate spheroidal shape. It is also possible to have oscillations with different shapes, the small

oscillations about the equilibrium shape perform simple harmonic motion [14, 15].
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The shape of the nucleus can then be parametrized from a spherical shape corrected by the

spherical harmonics Y ,(6,9)
R(0, 9) = Ro [1 + X0 X pe 1 2y Yau(6, 0)] (1-3)
Where R, is the radius of a sphere of the same volume, a,, a variable to characterize the
shape of the nucleus. The term 1 = 0 describes volume variations, 1 = 1 the translation of the
system. The term with 1 = 2 corresponds to quadrupole deformation and 4 = 3 to octupole
deformation. Using the transformation from the laboratory frame to the intrinsic frame, the five
a;=2, parameters are reduced to three real parameters azo, 022 = 02, and a1 = a1 = 0. These
variables can be parameterized as the following [14].
az0 = pcosy (1-4)
Az = Q2,2 = \/%,3 siny (1-5)
Where [ represents the extent of the quadrupole deformation, y gives the degree of axial
asymmetry. Most nuclei are axially symmetric, or close to it, at least in their ground states. For
an axially symmetric nucleus, the potential has a minimum at y = 0". A common convention
(Lund conventions) for the ranges of the g and y variables is that g >0, y = 0" for an axially
symmetric prolate nucleus and that # > 0, y = 60" gives an axially symmetric oblate nucleus as it
is shown in Fig.(1-3). Note that for # < 0, y = 0’, the nucleus is oblate [14,15]. If y is not a

multiple of 60°, one says that the nucleus is triaxial.
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spherical

ohlate

Fig. (1-3): Nuclear deformation in the (f, y) plane. The Lund conventions are used. The
four cases (y =120°, 180", 240", 300°) correspond to the cases with ¥ =0" and 60 but with

different orientations of their axis. The area 0'<y <60 (in grey) is then sufficient to
describe the nuclear deformation

1.5 Interacting boson model (IBM)

The interacting boson model originated from early ideas of Feshbach and lachello [15,16],
who in 1969 described some properties of light nuclei in terms of interacting bosons, and from
the work of Janssen, Jolos and Donau (1974) [16, 17], who in 1974 suggested a description of
collective quadrupole states in nuclei in terms of a SU(6) group. The latter description was
subsequently cast into a different mathematical form by Arima and lachello, 1975 [17, 18], with

the introduction of an s-boson, which made the SU(6), or rather U(6), structure more apparent.
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The success of this phenomenological approach to the structure of nuclei has led to major
developments in the understanding of nuclear structure [15, 16, 17, 18].

The major new development was the realization that the bosons could be interpreted as
nucleon pairs (Arima et al., 1977) [18, 19, 20] in much the same way as Cooper pairs in the
electron gas (Cooper, 1956). This provided a framework for a microscopic description of
collective quadrupole states in nuclei and stimulated a large number of theoretical
investigations. An immediate consequence of this interpretation was that, since one expected
both neutron and proton pairs, one was led to consider a model with two types of bosons, proton
bosons and neutron bosons. In order to make the distinction between proton and neutron bosons
more apparent, the resulting model was called the interacting boson model-2, while the original
version retained the name of interacting boson model-1[20, 21, 22].

Subsequently, the model was further expanded by introducing explicitly unpaired fermions,
thus allowing one to treat odd-even nuclei (lachello and Scholten, 1979) [23]. Of this extension
there exist now two versions, called the interacting boson-fermion model-1 and -2 [23,24]. In
recent years, yet more extensions have been developed, including mixing of configurations,
giant resonances, etc. As a result, there is hardly any aspect of nuclear structure that has not
been touched by IBM [16, 17, 18, 19, 20, 21, 22].

The interacting boson model is an algebraic collective model that has a microscopic
foundation in the shell model [16]. As mentioned above, one of the keys to understand nuclei is
isolating the important interactions and degrees of freedom. The interacting boson model
forgoes some of the single particle structure of the shell model, and focuses onthe L=0and L
= 2 couplings that play a dominant role in the low-lying states in even-even collective nuclei
[17]. The symmetries in this model allow successful descriptions of vibrational, axially-

symmetric deformed, and deformed gamma-soft collective structure.
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When the proton-neutron degree of freedom is included in the interacting boson model, an
additional class of states called mixed-symmetry states is allowed. When compared to their
symmetric counterparts, these states have a negative phase factor between the proton and
neutron boson components of the wave function. The experimental signatures for these mixed-
symmetry states are strong Ml transitions to symmetric states [15].

The interacting boson model is a useful framework for the study of quantum phase
transitions in nuclei. By using the method of coherent states, the algebraic structure of states in
this model can be related to geometric variables g and y [15]. With this formalism, an energy
potential surface for the ground state can be found, which can help illustrate the transition from
spherical to deformed between the symmetries. The behavior of the minima in energy potential
surface shows that both first and second order phase transitions should occur in the model.

One of the most fundamental models in nuclear structure is the shell model, which was
developed by Jensen and Mayer [11]. It is very useful for describing nuclei with a small number
of valence nucleons, but as one moves away from closed shells, and collectivity takes hold, the
model-space becomes much too large for calculations to be possible even on modern computers.
At low energies in the shell model for even-even nuclei, pairs of identical valence nucleons
occupy the same orbits, with the pairs coupling to L = 0 at the lowest energy and L = 2 at a
higher energy. Many other configurations are possible, but at low energies, truncating the model
space to include only those two-particle configurations that lead to an interesting model that has
a much smaller model space, and wide applicability. This model is the interacting boson model
(IBM) [25].

In the last decade the neutron-rich nuclei in the 40 < Z < 50 region have attracted both

theoretical and experimental attention. They were extensively studied via spontaneous or
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induced fission reactions. Nuclei from this region of Segr'e chart exhibit vibrational,

transitional, and rotational types of collectivity.

Such structures naturally appear in the framework of the interacting boson model (IBM) [26]
which has been shown to be successful in the description of nuclear collective properties. The
IBM in its first version, known as IBM-1, is based on the assumption that nuclear collectivity
can be expressed in terms of s and d bosons [26, 27]. The model Hamiltonian is constructed
from a set of 36 operators, bilinear in the boson creation and annihilation operators and
generating the U(6) Lie algebra. Dynamical symmetries occur if the Hamiltonian can be written
as a combination of invariant (or Casimir) operators of specific subalgebras of U(6) [26, 27] and
three such cases occur, namely the spherical vibrational limit U(5), the deformed limit SU(3),

and y-soft limit SO(6).

We begin from a strongly truncated model space, however, by keeping the pairing and
quadrupole force components within the Interacting Boson Model (IBM) approximation [28].
This model approximates the interacting many-fermion problem using as the major degrees of
freedom, N pairs of valence nucleons that are treated as bosons, carrying angular momentum
either 0 (the s bosons) or 2 (the d bosons). This model is very appropriate in order to describe
even-even medium-mass and heavy nuclei and transitional nuclei. Even here, treating proton
and neutron bosons explicitly, one risks to be involved with too many model parameters.
Therefore, in the present description of the Zr isotopes, we make use of an approach in which
we restrict the use of identical bosons. This act of truncation naturally implies that one has to
replace the Hamiltonian by an effective IBM Hamiltonian describing the interactions amongst

these identical bosons [26, 27, 28].
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The calculations are in the shell-model scheme and of the empirical structure of near closed-
shell nuclei, in which 0" and 2" states lie considerably lower in energy than those of higher
angular momentum. More specifically, this is characteristic feature of shell-model calculation of
levels resulting from a short-range residual interaction in a two particle configuration of
identical nucleons in the same orbit. Hence, it is reasonable to view the boson states as being
constructed from the valence space only and to identify the bosons as correlated pairs of like
nucleons. As such, the number N= ng + nq is finite and conserved in a given nucleons and is
simply given by half the total number of valence nucleons. In the original version of the model,
the IBM-1, with which this review deals, no distinction is made between protons and neutrons.
Moreover, the valence number counting is always done relative to the nearest closed shells.
Calculate the number of difference between protons or neutrons relative to the nearest closed
shell divided by two then adding both protons and neutrons bosons to give us the total number
of bosons. For example, the nucleus 13¢Zr,, has five valence proton bosons (relative to Z=50)
and seven neutron bosons (relative to N=50), and so the boson number is N= 5+7=12, in this
case protons are holes but neutrons are particles relative to the nearest close shell. And, in the
8071, has five valence protons and five neutrons (relative to N=50) and in this case both

protons and neutrons are holes. Similarly, both '9§Pt;15 and 28Xess have N=N_ + N, =2+4=6

bosons and are taken to have the same basis states in the model, even though in one case both
protons and neutrons are holes, while in the other the protons are particles and the neutrons
holes. Nevertheless, despite this simplification, the key ingredient remains, namely, the explicit
incorporation in the formalism of the finite number of valence nucleons available. This feature
leads to many of the characteristic differences between the predictions of the IBA and earlier

phenomenological models of collective nuclear structure, and also tends the former a
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microscopic aspect, in that a substantial part of the predicted structural changes across a major
shell arise automatically from the changes in boson number [15,16,17].

As a peculiarity of the IBM, there exist special cases in which certain linear combinations of
matrix elements of this interaction potential vanish. In these cases, the energies of the nuclear
states and the configurations can be expressed in a closed algebraic form. These special cases
are named "dynamic symmetries”. They correspond to the well-known "limits" allocated to the
vibration, the rotation etcetera of the whole nucleus. However, most nuclei have to be calculated
by diagonalising the Hamilton matrix as is usual in quantum mechanics.

The IBM is not only in connection with the shell model but also with the collective model of
the atomic nucleus of Bohr and Mottelson [19, 20]. In this model the deformation of the nuclear
surface is represented by five parameters from which a Hamiltonian of a five dimensional
oscillator results. It contains fivefold generating and annihilating operators for oscillator quanta.
The operators of these bosons correspond to the operators of the d-shell in the IBM.

However, the handling of the collective model is laborious. Moreover, the number of bosons
is unlimited and is not a good quantum number in contrast to the situation in the IBM. The
special cases mentioned above are reproduced by some versions of geometric models but they
are not joined together continuously. In the IBM these relations exist. An additional relationship
between both models consists in the fact that the form of the Hamilton operator (after suitable
transformations) is similar to the one of the IBM. The total spin of a boson is identical with its
angular momentum i.e. one does not attribute an intrinsic spin to the bosons. Since the angular
momenta of the bosons are even (|1 =0, 2 ) their parity is positive [21,22].

The application of the IBA to odd-mass nuclei, in which an odd nucleon is coupled to an

IBA-1, description of the even-even core in the so-called interacting boson-fermion
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approximation (IBFA) will also not be covered [23, 24]. And we can explain furthermore the

interacting boson model in chapter two.
1.6 Previous studies

Zirconium with atomic number 40 and atomic weight 91.224(2)u has about thirty-three
isotopes. Naturally occurring zirconium (Zr) is composed of four stable isotopes of which
9. 91,92, 947y and *®Zr-isotope are nearly stable because they have a longer half-life than the age
of the universe [29]. And *°Zr is a primordial nuclide that decays via double beta decay with an
observed half-life of 2.0x10"° years. It can also undergo single beta decay which is not yet
observed, but the theoretically predicted value of ty, is 2.4x10%° years [30]. The second most
stable radioisotope is *Zr which has a half-life of 1.53 million years [29, 30]. Twenty-seven
other radioisotopes have been observed. All have half-lives, less than a day except for *°zr
(64.02 days), %8Zr (63.4 days), and ®Zr (78.41 hours). The primary decay mode is electron
capture for isotopes lighter than °Zr, and the primary mode for heavier isotopes in beta decay
[31].

Zirconium is the heaviest element that can be formed from symmetric fusion from either
3¢, or “*Ca producing *°Zr (after two beta-plus decays from *°Mo) and %?Zr respectively. All
heavier elements are formed through asymmetric fusion or during the collapse of supernovae.
As most of these are energy-absorbing processes, most nuclides of elements are heavier than it
has been observed. The natural abundances of the Zirconium isotopes are *°Zr (51.45%), *'zr
(11.22%), %2Zr (17.15%), *Zr (17.38%) and “°Zr (2.80%) [30,31]. The nuclear structure of these
isotopes have been the subject of several experiments and theoretical investigations such as:

e Studies of low-lying states in Zr excited with the inelastic neutron scattering reaction

[32]. In this study, the low-lying structure of J3Zr has been studied with the (n,n' y)
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reaction to identify symmetric and MS excitation in this nucleus. And used the y-ray
Spectroscopy, Doppler-shift Attenuation Method (DSAM), and Reduced Transition
Probabilities.

e Zirconium isotopes are evidence for the heterogeneous distribution of s-process
materials in the solar system [33]. In order to establish the occurrence and extent of such
isotopic heterogeneities in Zr and to investigate the origin of widespread heterogeneities
in our solar system, new high-precision Zr isotope data are reported for a range of
primitive and differentiated meteorites. The majority of the carbonaceous chondrites
(CV, CM, CO, CK) display variable ¢*°Zr values (< 1.4) relative to the earth.

e Discovery of Deformed Magic Number for Zirconium Isotopes (Deformed Magic
Number Causes a Large Nuclear Deformation)[34], with some key points: Region of
large deformation observed for neutron-rich zirconium (Zr) isotopes, degree of
deformation of zirconium isotopes reaches the maximum when neutron number is 64
and equals the deformed magic number , and understanding changes in deformation may
lead to understanding of the heavy element nucleosynthesis process in supernova
explosions.

e Hartree-Fock-Bogoliubov calculations in coordinate space using to study the properties
of neutron-rich zirconium (**22%zr) [35]. In particular, they calculate two-neutron
separation energies, Quardapule moments, and rms-radii for proton and neutrons. And
compare calculations with results from relativistic mean field theory and with available
experimental data.

e Microscopic study of nuclear structure for some Zr-isotopes using Skyrme-Hartree-
Fock-Method [36]. By using the Skyrme parameterizations : SkM,S1,S3,SkM, and SkM

.the charge, proton, neutron and mass densities together with their associated root mean
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square radii, neutron skin thickness, nuclear binding energies, and charge form factors
have been calculated. Comparison between the theoretical and experimental results of
charge form factors has likewise been performed.

e Shape co-existence and parity doublet in Zr isotopes [37]. They studied the ground and
excited states properties for Zr isotopes starting from proton to neutron drip-lines using
the relativistic and non-relativistic mean field formalisms with BCS and Bogoliubov
pairing. The celebrity ML3 and SLy4 parameter sets are used in the calculations, and
found spherical ground and low-lying large deformed excited states in most of the
isotopes. Several couples of Q" = 1/2* parity doublets configurations are found, while
analyzing the single-particle energy levels of the large deformed configurations.

e The role of the intrinsic E2 matrix element between the two 0 states in their
configuration mixing in '%°Zr [38]. Shape coexistence in ®zr is a well-known
phenomenon. And this study can describe the very important value of B(E2) and
lifetimes, with some work in the nuclear structure **Zzr.

e Neutron-rich Zr and Mo isotopes were populated as fission fragments produced by the
28( «, f) fusion-fission reaction. Triaxiality and the aligned hyi, neutron orbitals in
neutron-rich Zr isotopes [39]. The level schemes of these nuclei have been extended
beyond the first band crossing region, which can be ascribed to the h;;, neutron pair
alignment. The spin alignment and signature splitting for the vhyy, orbitals in term of
triaxiality is addressed for calculations used the cranked shell model.

e Proton-neutron structure of %Zr [40]. By using experimental data and shell model
calculations show that both, single particle and collective degree of freedom are present
in the low-lying levels of ®*Zr. The second excited quadrupole state shows the signatures

of the one-phonon mixed-symmetric 2* state, whole calculations and data indicate an
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almost pure neutron configuration for the 2 state, in contradiction with the F-spin
symmetric limit and furthermore.

e Measurements of prompt y rays in coincidence with isotopically-identified fission
fragments, produced in collisions of ?**U on a Be target, at energy around the coulomb
barrier are reported. The structure evolution of the neutron-rich zirconium isotopes is
discussed. With using the interacting boson model with a global parameterization that
includes triaxiality. Towards the high spin-isospin frontier using isotopically-identified
fission fragments [41].

e Using a schematic Interacting Boson Model (IBM) Hamiltonian to evaluate from
spherical to deformed shapes along the chain of Zr isotopes from % zr to *zr,
describing at the same time the excitation energies as well as the two-neutron separation
energies. This is theoretical description of energy spectra and two-neutron separation
energies for neutron-rich zirconium isotopes [42].

e Shape transition and collective dynamics in **'%zr nuclei [43]. Quadrupole and
octupole excitations in even *%°Zr nuclei are studied within the fully microscopic
generator coordinate method using a basis generated by the self-consistent Hartree-Fock
and GCM method.

e Interacting boson model-1 (IBM-1) used to calculations toward the neutron-rich nucleus
1067y [44], to study the energy levels and electric quardupole transition probabilities and
compared with experimental information.

e Giant M1 states in Zr isotopes [45], by using the simple shell model. The newly
observed M1 states in the ( p,p') experiment on the Zr isotopes are considered the simple

shell model. The calculation with a constant strength  function interaction reproduces
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the excitation energies and the slight increase of the M1 strength at small momentum
transfer with mass number.

e Microscopic study of oblate to prolate shape transition at higher spins in neutron-rich %
1047y isotopes [46]. This study used the theoretical yrast spectra obtained in PSM
framework compared with experimental data.

e Anomaly in the nuclear charge radii of Zr isotopes [47], use the recent laser
spectroscopic measurements, evaluate the nuclear root-mean-square charge radii on a
chain of *°Zr isotopes. A prominent kink is observed at Zr and a sharp change is noticed
between %8Zr and 1°°Zr, in the neutron rich region.

e Neutron separation energies of Zr isotopes [48], Q-value are reported for (d,t) reactions
on all the stable isotopes of zirconium. Used the theoretical evaluation of Wapstra and
Gova (WG) method and then compared to the experimental data.

e Deformation parameters and nuclear radius of zirconium isotopes [49], using the
deformed shell model. In this search he studied the most important deformation
parameters ( 9,0), intrinsic quadrupole moments (Q,), root mean square of the nuclear
radius and major with minor of ellipsoid axises (a,b) in addition to the difference
between them.

e Investigation of the neutron-rich zirconium (**zr, **zr) [50], using interacting boson
model. In this study calculated the low-lying levels structure and electric quadrupole
transition by (IBM-1).and compared with experimental data.

e A study of some nuclear properties of 1%2Zr such as energy levels and B(E2) transition
[51], by using interacting boson model IBM-1 and IBM-2. Compared with experimental

data.
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e A study of some nuclear properties of 1%°Zr such as energy levels and B(E2) transition
[52], by using interacting boson model IBM-1 and IBM-2. Compared with experimental
data.

e Gamow-Tellar strength distributions, p-decay half-lives, and f-delayed neutron emission
are investigated in neutron—rich Zr isotopes with in a deformed quasiparticle random-
phase approximation briefly S-decay properties [53]. Using self-consistent Skyrme
Hartree-Fock mean field with correlations.

e Charge radii and structural evolution in Zr isotopes including both even-even and odd-A
nuclei [54], is studied within self-consistent Skyrme Hartree-Fock-Bogoliubov (HFB).

e Study of spin rotation function for polarized proton incident on Zr isotopes [55]. In
framework of first-order Brueckner theory employing Urbana V14, soft-core
internucleon interaction along with relativistic mean field (RMF).

e Application of realistic effective interactions to the structure of the Zr isotopes [56]. The
Zr isotopes undergo a clear and smooth shape transition with increasing neutron number.
The isotopes which are displayed span from pure spherical nuclei that can be described
in terms of simple shell-model configurations.

e Shell Model Calculations for Even Zirconium Isotopes [57], This contribution is a status
report of the project aiming to describe the low-lying structure of the Zr isotopic chain

by large scale shell model calculations.

e Lifetime measurements of the first 2+states in 1%*'%zr [58], Evolution of ground-state
deformations. The first fast-timing measurements from nuclides produced via the in-
flight fission mechanism are reported. The lifetimes of the first 2*states in 1**'%Zr nuclei

have been measured via f-delayed y-ray timing of stopped radioactive isotope beams
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e Determination of the differences between the charge radii of zirconium [59], nuclei
using laser-excited resonance fluorescence. The optical isotopic shifts of all the stable
zirconium isotopes were determined for three atomic transitions of the 4d 255> — 4d
?5s5p type by the method of laser-excited resonance fluorescence. The differences

between the mean-square charge radii A< R%> were determined for zirconium ions.

e A comparative study between semi-empirical oscillator strengthen parameterization and
relativistic Hartree-Fock methods for computing the radiative parameters in Zr Il

spectrum [60].
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1.7 Aims of the work

In the present work, the calculations have been performed for 31%zr-isotopes (with Z = 40
and 40 <N < 68) and to dedicate to study the following:

e Energy levels, nuclear shape and electromagnetic properties will be calculated.

e A detailed analysis of some spectroscopic observables, such as the ratio R4/2 of
excitation energies of the first 2* and 4" levels or the amplitude of even-odd staggering

in the y band, The dynamical symmetries of even- even Zr- isotopes will be identified.

e The electric properties of the considered nuclei such as the E2 transition rates and the

quadrupole moment of the first excited states 27 (i.e. Q27).

e The magnetic properties of the considered nuclei such as the M1 transition rates, mixing

ratios and the magnetic dipole moments of the first excited states 27 (i.e. u27).

1.8 The outline

The outline of this thesis includes the following: the main characteristics of the theory of
the interacting boson model of the IBM-1 and IBM-2 models, which are presented in chapter
two. A brief description of the computer programs used in this work for the calculation of the
energy and electromagnetic properties of IBM-1 and IBM-2 models is given in chapter three.
The results and discussion of our theoretical calculation are presented in chapter four. The
summary and the conclusions which are drawn by the present work and the suggested future

works are presented in chapter five.
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Chapter Two
The Interacting Boson Models (IBM)

A nuclear model was proposed by Arima and lachello, called Interacting Boson Model
(IBM) to study the structure and properties of even— even nuclei and describing collective
excitations in atomic nuclei. One of the advantages of the model is its use of the symmetries of
the boson operators introduced in the model, which allows for analytic expressions of the states
and expectation values for three different ideal limits of nuclei. In the IBM-1, the number of
bosons is given by the number of pairs of protons and pairs of neutrons outside of closed shells.
No distinction is made between proton type and neutron type bosons, but in IBM-2, distinction

is made between proton type and neutron type bosons [16, 17, 18, 19].
2.1 IBM-1 Model

IBM-1 is (s-d) bosons system, which has six components that can be analogues to six-
dimension space. In the view of group theory, this will lead to a description in terms of U(6). In
the IBM-1, the nucleon or hole pairs must be the same type of nucleon. Meaning pairs
consisting of a proton and neutron are not included. The IBM-1 is applicable only to even-even
nuclei. The nuclear states are represented in the framework of second quantization. The boson
creation operators are given by (s') and( dTH) and the boson annihilation operators by (' s) and

(dy) where (un=-2,—1,0, 1, 2) satisfy the following commutation relations [63].

[s,s]=[s",s"1=0 (2-1)
[, d]=[s",d] =[s,d=[s", d"] =0 (2-2)
[d, dy1=[d", d"y]1=0 (2-3)
[dy, dy 1= Spp (2-4)
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2.1.1 The Hamiltonian

The Hamiltonian, which connects the basis states, is written in the language of second
quantization and, as such, can only involve combinations of the operators s, s" , d , d" . The
specific combinations that appear are defined by the restriction limiting the complexity to a
maximum of two-body interactions and by the need to conserve the total number of bosons. The
former constraint implies that terms containing, for example, d'd" or ss" are allowed, while
combinations such as d'd'd" are not. The latter demands that every creation operator be
accompanied by an annihilation operator and vice versa. Such Hamiltonian operator (H)

contains one and two body operators
H=es'5 + eg Xpdid+V (2-5)

Where ¢ , g4 are s and d single — boson energies, V is boson-boson interaction potential,
s"(§) are creation and annihilation operators for the state (s) , (s-boson), and d( d) are
creation and annihilation operators for the state(d) , (d-boson). These rules result in the

following form for the most general IBA-1 Hamiltonian [64, 65, 66, 67, 68].
A=Eo+es(st.5) + &g (dl.d)+Yim0245V2L+1CL [ [d1® d®[d Q@ ]t ]0
+ Vo2 [dtQ d2 @[A®35] + [di® s12 @ [di® dI ]°

+ Vo2 [ [dI® d1]° Q5 ® 5]° + [$t® st]'R[d ® d]° ]

+Uz [ [dT® st @[dR®3]2]° + uo/2 [ [st® st]° Q5 ® §]°]° (2-6)
where the coefficient in front of each term has been chosen according to the definitions of
Arima and lachello [17]. The operator d is defined by
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d m=(-1)"dm (2-7)
so that it maintains the character of a spherical tensor operator of rank two. This form of
Hamiltonian is the most direct form which includes all allowed one-body and two-body
interactions in the second quantization formalism. In this Hamiltonian Eo is the core energy; &
and &4 are the binding energies of the s and d boson (or we can say s and &4 are single boson
energies for s-and d-boson respectively); the operators (s's) and (dt d) count the number of s
and d bosons, respectively. Where ns and ng are number operators, the C,. Vo, V2, Uz and Up are
corresponding interaction parameters (The three constants Cy C, and C,4 specify the interaction
between the d-bosons and similarly up specifies the interaction strength among the s-bosons.
The interaction of the s-bosons with the d-bosons is given by V, , Vo and uy). It is apparent that
the full Hamiltonian of Eqg. (2.6) involves two single-boson energies (multiplying the one body
terms (e, £¢)), and seven boson-boson interaction strengths (multiplying the two-body terms
(Co, Cy, C4 Vo, V2, Uz, Up)).

It can be shown that for the calculation of excitation energies only 6 of these 10 parameters
are linearly independent. The effect of s for example, can be absorbed into &4 and E, by making

use of the total boson number conservation, and the total number of boson is
N=ns+nq (2-8)
Also we can written as

& (sts) + &4 (at ci) =g Ng+egg Ng=es N + (sd'- 85') Ng = &sN + &4 Ng (2-9)
Where g4= (gq- &) is the difference in binding energy between the s-and the d-boson. Since &N
is a constant for a given nucleus, its contribution can be absorbed in E, . Similarly the

contribution of u, and u, can be absorbed in E,, ggand C,_using
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[(dTST)(Z) (CZS)(Z) gO): (STS)gO) (dt d)g()) — %(Nnd - Ng Ng)

= LW~ D Tio2aV2LH1 [ (@Fdn) @ 1) (2-10)
, and

[(s*s1)(s9) 15" = ns(ns=1) = (N = ng- 1)( N — no)

(N=1)N=2(N—1)ng+Y;,—024V2L + 1 [ (dt dD)L(dd)- 15" (2-11)
For a given nucleus E, is a constant affecting only the binding energy. The calculation of the

matrix elements of this general Hamiltonian can be carried out in a straight forward way, using

the coefficients of fractional parentage (cfp) [20]. From the above equations, N is a fixed for a

given nucleus and only the excitation energy are considered, then only one of the one body

terms and five of the two body terms are independent, and then the number is further reduced to

six parameters. And we can express the number of s-boson and d-boson in terms of creation and

annihilation operators,

The number of s-boson is

ng=sts (2-12)
The number of d-boson is

ng=dfd (2-13)
the most commonly used form of the IBA Hamiltonian, and the one in which it is the easiest to
understand the role of each term in determining the final structure of the nucleus under
consideration, is the so-called multipole expansion. In this parametrization the various boson-

boson interactions are grouped so that the Hamiltonian takes the form [15, 16, 17, 18, 19, 20].

H=¢ (ng) + ao (P p) + al(i. i) + az(é. Q) + ag(Tg. Tg) + a4(T‘4. T4) (2-14)
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Where ¢, a,, a;, a2, as and a4 are the model parameters, P, L, Q, Tz and T, are the pairing,
angular momentum, quadrupole, octopole and hexadecapole operators respectively. nq is the
d-boson number operator, and all operators in the Hamiltonian are the following
[64,65,66,67,68]

Pairing operator is

P=2[(d.d)-(5.8)]=5(d -3 (2-15)
T=[di®d] 1=0,12.3.4,... (2-16)
Angular momentum operator is

L =10 [dt® d]* = V10T (2-17)

Quadrupole moment operator is

Q=[d'® 5 +s'@ dP —Z[d'® dY’

= [dt® 5 +st@ A2 — L 1y (2-18)
Octapole operator is
Ts=[d® d]° (2-19)

Hexadecapole operator is

Ts=[d'Q d]’ (2-20)

Number of d-boson operator is

fig= V5T (2-21)
In this form there appear terms that have, at least superficially, a more physical connotation,

specifically an angular momentum operator, a quadrupole operator, octupole and hexadecapole

terms, as well as the so-called pairing operator P. Note, however, that these are operators acting

on boson states, not in the fermion space. It is in this form, therefore, that we shall usually
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consider the application of the IBA-1 Hamiltonian to the set of basis states described earlier. We
note that the definition of Q above uses a specific SU(3) choice of numerical coefficients.
The Hamiltonian also can be written in terms of Casimir operator [17].

H=¢Ciys +a Caup) +B Caop) +y Cao@) + 0C2su@) + 1Coe) (2-22)
Where ¢, o, B, 7, 6, and 5 are parameters, C1ys is linear Casimir operator and Caug) , C20) »
C20@) , Casu),.and Co are quadratic Casimir operator.

As will become evident, an important concept is that of a Casimir operator of a group. This is an
operator that commutes with all of the generators of the group. Such operators can be composed
of linear or higher-order combinations of the generators and are appropriately called linear,
quadratic, . . ., Casimir operators.

For example, in the case of O(3), the operator
=R+t =]d-+]; (2-23)
Commutes with J,, /. ,and J_ and is therefore the (quadratic) Casimir operator of O(3).

2.1.2 Electromagnetic transition operator

Many observable quantities can be calculated in the framework of IBM by evaluating the
matrix elements of the appropriate operators. The construction of operators for the various
nuclear structure observables of interest is again straightforward, given the fact that they must
be built from the basic elements s, s*, d or d* . In the vast majority of applications to date, only
the lowest-order contributions to these operators have been included [64, 65, 66, 67, 68]

The electric monopole transition operator is
T(E0) = a ﬁ#% fig (2-24)

The T(EOQ) operator can be rewritten as

T(E0) = (N — fig) + %ﬁd — o(N)+ %ﬁd (2-25)
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Where a and f are the coefficient of the various terms in the operator. The first term in T(EO)
vanishes, since N is conserved and therefore cannot induce transitions between the orthogonal
basis states. Hence EO transitions are simply proportional to the matrix elements of the d-boson
number operator and thus rather directly sample the wave function structure, can be written as
TEO = ¢, 7, .

The most important electromagnetic features are the E2 transitions. The B(E2) values were
calculated by using the E2 operator. The E2 transition operator (electric quadrupole transition
operator) must be a Hermitian tensor of rank two and therefore the number of bosons must be
conserved. Since with these constraints the general E2 operator can be written as
T(E2) = ep [(dT3 + st d) + x(dt d)?]=ezQ (2-26)
Where e plays the role of the effective boson charge. The parameter x determines the relative
importance of the two terms. The E2 operator, which is identical in form to the Q operator in the
Hamiltonian, consists of one piece that changes ng by unity and another that leaves ng
unchanged, the ratio of the two terms being given by the parameter .

Hexadecupole transition operator is a tensor of rank four (E4) and can be written as

Tt =& [dt® d]p, (2-27)
the momopole operator M can be constructed in a similar manner [19]

MO =¢ + 0g (st)@ + By (dtd)@ (2-28)
Where ¢ is a constant, the monopole operator is used to calculate properties such as EO
transitions and mean square radii.

The magnetic dipole transition operator are [17,18,19]

T(M1)=gpL=g5 [d*®d]}, (2-29)
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In contrast, the M | operator is proportional to the total angular momentum and therefore gives
rise to no transitions. To investigate M1 transitions in the IBA-1 framework, it has therefore
been necessary to introduce second-order terms [17] In this case, one has
T(M1)=(gz+AN)L+B#, L+C QLY (2-30)
Then the magnetic octupole transition operator is a tensor to rank three
ol = e3[dt® d]3, (2-31)
Electromagnetic transition rates can be calculated in the usual way. By taking the reduced
matrix element of the corresponding transition operators between initial and final states as
(LAITHIL).
The relation could hold for electric and magnetic transition probability, B(EI) and B(MI)

respectively as [17]

1
2Li+1

B(|; L; —>Lf) =

[(LAITHIL)? (2-32)
Where:
Li : Angular momentum of the initial state.
Ls : Angular momentum of the final state.
T! : Transition operator.

Turning now to other properties, the operator for the mean-square radius is, of course,
closely related to that for the EO transitions and is given by
r2=(r?).+af, +bN (2-33)
Where the first term represent the mean-square radius of the closed-shell core. a and b are

constants.
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2.1.3 Dynamical symmetries

As we have mentioned before, it is Hamiltonian exactly for certain sets of possible to solve
the IBM parameters using group theoretical methods. In the following the relevant symmetries
are discussed briefly. The s(L=0) and d(L=2) bosons of the IBM-1 have six components
(substates ) and therefore define a six-dimensional space. This leads to a description in terms of
the unitary group in six dimensions, U(6). The Hamiltonian (2-6) can be regarded as a general
rotation in a six dimensional space. The six dimensions are formed by the s-boson and the five
components of the d-boson, d, di, do d.1, d.. It is a unitary operator because the norm (i.e. the
number of bosons) of the vectors is left invariant. This means that the general Hamiltonian can
be discussed in terms of the group U(6), of all unitary transformations in six dimensions.

As a consequence, many of the characteristic properties of the IBM can be derived by group-
theoretical methods and expressed analytically. When we consider the different reductions of
U(6), three dynamical symmetries emerge [17,18,19] known as U(5) ,SU(3) and O(6), which are
related to the geometrical idea of the spherical vibrator ,deformed rotor and symmetric (y-Soft)
deformed, respectively[21]. According to the value of the (¢) and (V) in Eq.(2-5) that there are
three limits in IBM-1: at the first limit € > V this state named by vibration dynamical symmetry
described by subgroup U(5), at second limit when V > ¢ this state named by rotational
dynamical symmetry described by subgroup SU(3), and at third limit when V = ¢ then state
named by y-unstable symmetry described by subgroup O(6) [17,18,19,20,21].

The number of generator in term of unitary group U(n) [16] is
Number of generator of U(n) = n? (2-34)

Thus we have 36 generators of the U(6) group that can be written down explicitly [16]
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Guw = [st 3157, [ dtd)P [ dtd] P, [ dtd] P [ atd1$ [ dtd) P [ di5] P [std]P  (2-35)

A '

1 1 3 5 7 9 5 5 = 36

Since the generators are dependent on the angular momentum and the number of generator in
term of angular momentum is (2L+1). In special cases Hamiltonian can be expressed in terms of
the generators of a subgroup of U(6). The generators of a subgroup are a subset of these 36
U(6), generators, that close under commutation. Under the restriction that each group contains
the angular momentum group, O(3), as a subgroup, three group chains can be assigned

[16,17,18,19,20,21].

I.  U®B) > UB)>0(5)>0(3)
Il.  U(6) > SU(3) o O(3) (2-36)

. U(6) o 0(6) o O(5) o O(3)
These chains will be discussed more extensively in the following sections.

If the Hamiltonian can be written as the sum of the Casimir operators of one of the group
chains (2-36) one says that it has a dynamical symmetry. Whenever a dynamical symmetry
occurs the representations of a group are split in energy but not admixed with other
representations. The eigenstates can then be classified according to the group reduction. In these
cases there exists an analytic expression for the eigenvalues.

These analytic solutions arise only for certain values of the parameters in the Hamiltonian
(2-6). We shall refer to them as limiting cases and label them by the first subgroup in the chain.
The linear and quadratic Casimir operators of U(6) and its various subgroups can be written in

terms of the operators from Eqg. (2.15) to( 2-21) as

32| Page



Chapter Two The Interacting Boson Models (IBM)

P

Cuwe =N (2-37)
Couey=N (N +5) (2-38)
CiuE) = fig (2- 39)
Coup) =fig (g +4) (2- 40)
Casue) = EQZ + %Zz (2- 41)
Coo6 =2 N (N+4) -8P'P (2- 42)
Caop) = EEZ +4T2 (2- 43)
Cao) = 2 L2 (2- 44)

It should be commented that since these Casimir operators are defined by a set of vanishing
commutators, any multiplicative form is also a generator. The definitions above are
conventional and convenient ones. It now remains to identify the representation labels for each
chain, and hence the quantum numbers of the basis states, as well as the physical structure for
each limiting symmetry. In doing so, we shall from time to time make correspondences with

various geometrical models.

2.1.3.1 Group chain I: U(5) symmetry

This symmetry group described the vibrational nuclei which have spherical shape, and it has

25 numbers of generator in term of unitary group with used the eq.(2-34). We can write it as

[16]
Gue = [ )V [ dtd] P [ dtd) P [ drd]D [ drd]S” (2-45)
1 3 5 7 9 = 25
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These operators close under the algebra U(5). The quantum number with which the
representations of this group are labeled is ng.

The set Gys) contains a subset of 10 operators that close under commutation, the generators
of the orthogonal algebra in five dimensions O(5)
Number of generator O(n) = %n(n -1) (2-46)
and can be written as
Gog = [dtd]”, [did] (2-47)

3 7 = 10

The representations of O(5) are labeled by v, the boson seniority, the eigenvalues of the

quadratric Casimir operator of O(5),

Cog =3 (dtd)®. (dtd)®+ = (dtd)®. (dtd)® (2-48)

Are given by % v(v+3)

The O(5) group contains O(3), the angular momentum, as subgroup or rotational algebra, it has

three generators by using (2-46) as shown below

Gog =[ dtd]{ (2- 49)
3

The eigenvalues of the well-known Casimir operator of O(3),

[? =10 (dtd)®. (dtd)® (2-50)

Are L(L+1) , where L, the angular momentum, labels the different O(3) multiplets. In an O(3)

multiplet the levels are distinguished by M, the projection of L on the Z-axis.

Finally the single component generate of algebra O(2) of rotation around z-axis its

component of O(3) by use eq.(2-46) is given by
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Gop = [dtd]; (2-51)
1

This yields a possible chain of algebras [ 25,26,27,28]

U(6) o U(5) 2 0(5) 2 0(3) 2 0O(2)
[N] [Ngg wv,np L M,
This chain described by above six quantum numbers [16,17], and the eigenvectors can be

labeled with the quantum numbers of the various groups, which can be written as

| g} = [ [N][Na] v, naL M) (2-52)
Where [21]
Na=0,1,............... N (2-53)

N: is total number of bosons

v : is the d-boson seniority: represents the number of d-boson which are not coupled pairwise to

angular momentum zero

L: angular momentum

M_: component of angular momentum and

V=g Ng-2 ...............1 0or 0; ng =odd or even (2-54)

Another quantum number (ng) which gives the number of d-boson pairs [17] which are

coupled pairwise to angular momentum zero.
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V= Ng-2N, —Ny=(Ng—v) /2 (2-55)

N;=0,1...Ny/2 or Ns—1) /2 ; ng=even or odd (2-56)
The step from O(5) to O(3) is not fully decomposable then an extra quantum number required
which is n, as can be seen, an additional quantum number n, has been introduced to describe
the reduction from O(5) to O(3). This requirement indicates that within the basis states | Nng v >
which describe the representations of O(5) there can be more than one state with a particular
value of L [21].

na. describes the number of d-boson triplets which are coupled to zero angular momentum.
Then (ny) partition will be as

Ng=2N;+3ny+ 4 (2-57)
The value of (L) contained in each irrep Ny of U(5) are given by

L=, A, A2 o, 20-2,20 (2-58)
The value of M_ allowed for a given value of L is

LM < +L

We can classify scheme for the group chain I to show how it depended on the quantum numbers

that are shown in table (2-1) [16].
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Table (2-1) : Classification scheme for the group chain |

WO NN O

[EEN

S

N

ellell Jielle]ll Jilellellellelle] e}l Jdlellellellelle] (el lelle]le] (elle] fe]

The Hamiltonian for chain | can be written down in term of the Casimir operator as follows
Hi=a Ciys + Caue) + 7 Caoe) + 0 Caop) (2-59)

Eigenvalues for this chain from the Hamiltonian in term of the Casimir operator eq.(2-59) is

given by [17]

E=zang+pNg(Ngt4) +2yv (v+3) +26 L(L+1) (2-60)
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Where each term in Eq. (2-60) is the eigenvalue of the corresponding Casimir operator of Eq.(2-
59). While the Hamiltonian In terms of the operators of the multipole expansion, H, reduces to
[61,62,63].

ﬁ| =¢e(ng) + al(Z. Z) + as(T3. T3) + a4(T'4. T4) (2-61)

8+ 400 6+ 400 5+(400) 4+(M) 4+ 410 2+ 401 2+(m) 0+ 420
6+@) 4+ 300 3+ 300 2+@) 0+ 301

4+ 200 2+1200) 0+ 210

U(®)
2+ 100

(nd 1nﬁ 1nA)

0+ 000

Figure (2-1): low-lying levels of the U(5)symmetry of the IBM in the harmonic limit.
The U(5) limit hasn’t EO transition since the EQ operator is proportional to g

(IITEOj) < g (ilj) =0 (if i#]) (2-62)
The general form for quadrupole electric transition operators for the U(5) chain T(E2) is
given from equ.(2-26) has a term that changes nq by +1 and a term with A ng = 0. Since the
selection rule is
ng=0,+1 (2-63)
If the operator is chosen to be a generator of the U(5) symmetry, then only the latter term
would be used. However, the predicted E2 matrix elements would then be 0 between states
differing by 1 or more d bosons, while they would yield nonzero diagonal contributions
(quadrupole moments). This situation is essentially the inverse of that expected and observed for
vibrational nuclei, and hence it has been customary to use the first term of the El operator in the

U(5) limit, which produces results very similar to those of the geometric vibrational picture.

38| Page



Chapter Two The Interacting Boson Models (IBM)

The general result B(E2) values [64]

YuB(E2;Ln#1-L, ng) =e5 (ng+1) (N —ng) (2-64)
Where eg is a boson effective charge. The sum on the left side of Eq. (2.64) accounts for the
distribution of strength from a given initial state if the angular momentum selection rules allow
decay to more than one level of the next lower multiplet. This sum contains more than one term
only for decay of nqy > 3 states.

Equation (2.64) gives, for the transitions between the lowest levels,

B(E2; 2F—07)=¢e2 N (2-65)

B(E2; 47 —27)=2e2 (N-1) (2-66)

The ratio between these two transition probabilities:

_ B(Ez;4t-2f) _ , (v-1)
T B(E2;2f-00) T T N

<2 (2-67)

Since U(5) is usually relevant only near closed shells, where N is rather small, differences from

the geometric model can thus be significant.

and for N— oo then R =2 [17]

The electric quadrupole moment for the ground state is given by [17]

Qu=p [ DL (2-68)
Where
B = % oz, and it changes from 0 to %7 in this chain (2-69)
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A typical spectrum obtained from this Hamiltonian is shown in figure (2-2)

v,n, ———>
(n0) (g1) (g2 (0200 (0g-21) (Ng40) (ng6,0)
(L NS gAY o gEsL 2 &2 o
sl wEgrss &2 gy 0 2
4} ggsE I &2 g
S ,| sz ¢ z
Y R [
12
ol o U(5)

Figure (2-2): A typical spectrum with U(5) symmetry and N=6.in parentheses the quantum
numbers (v) and (ng) appear [17,18,19,20,21].

2.1.3.2 Group chain I1: SU(3) symmetry

This symmetry group is used to describe the rotational spectra of nuclei, and it has 8 numbers

of generator in term of special unitary group which used the following rule in the generator

Number of generator of SU(n) = n®—1 (2-70)
The generators are
Gsu= [ dtd], [(d" 5 + st d)J2 — V7 [ dtd]D (2-71)

J L

3 5 = 8

These generators can be rewritten as
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Gsue=1{ LE}R : Q,(,f)} (2-72)

Where L and Q are angular momentum and quardupole operators respectively from equ. (2-17)

and equ.(2-18).

This group has again O(3) as a subgroup and the generator is (2-49) with 3 number of

generator and the itself component O(2) from equ.(2-51) has only one number of generator. In
the definition of the quadrupole operator in principle also + %\/7 is allowed instead of —§\/7.

This sign change makes no difference in the calculation of excitation energies, it will only

change the sign of the quadrupole moment

This yields a possible chain of algebras [ 17,18,19,20,21]
Uf) D StlJ/(S) D C\)lf3) D C\)le)
Nl K L M
The labels needed to classify the states in this chain are [16]. The U(6) group is
U(6) = [N,0,0,0,0,0] = [N] (2-73)
Because U(6) known by the total number of boson (N).
In the SU(3) scheme the states can be labeled as [10]

l) = |IN] (A, W) K LM,) (2-74)

The group of SU(3) are characterized by two quantum numbers (A,u) the value of each (A,p)

contained in each N are given by [16]
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[N]= (L) = (2N,0) @ (2N-4,2)D(2N-8,4)D...H {( om } {'IVVZ”;;}
@(2N-6,0)69(2N-10,2)69...e% E‘Z’xj‘g} { 1;’\]—_3;:60”;;1} (2-75)
@ (2N-12,0)(2N-16,2) eaea{ gg;x;gg}{ %16613";;}

The step from SU(3) to O(3) is not fully decomposable, and then an extra quantum number is

required which is denoted by( K). The corresponding number is called K. The values of L

contained in each representation (A,u) are then given by the following algorithm [17]:

L=K ,K+1,K+2 .... K+ max (A,u) (2-76)
Where
K =integer = min(A,p) ,min(A,u)-2 .... 1 or 0; {min(A,u) =odd or even} (2-77)

With the expansion of K = 0 for which

L=max(A,u), max(A,n)-2.... 1 or 0; { max(A,pn)=odd or even} (2-78)
and O(3) ,0(2) they are described by quantum number L and M, respectively.

We can classify scheme for the group chain Il to show how it depended on the quantum

numbers shown in the table (2-2) [16].
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Table (2-2): Classification scheme for the group chain |1

The Hamiltonian is just a linear combination of the Casimir operators of SU(3) and O(3) and

can be written [16,17,18,19,20,21,22]

Hu = iZ +a QZ (2-79)
Comparison with Eq. (2.42) and Eq.(2-45) shows that this form is equivalent to

= 3 1 3

Hu=72:Caosue) + [ ;a1 — £ a2] Caop (2-80)
The eigenvalue of the SU(3) Casimir operator as denned in Eq. (2.42) and Eq.(2-45) is given by
By = 5 OF 1 +Aut 31+ 3p) (2-81)
And thus the resulting eigenvalue expression is [16]

E=22 (02 +p2 #Ap+ 30+ 3p) + (81 - 222) L(L+1) (2-82)
2 8

a; and a; can be calculated by [17]

E2Y 3
al = Tl + g az (2'83)
_  [E23 - E21]
a=- 3(2N—1) (2-84)
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If the specific form of the quadrupole operator [16,17,18]
Q=[ats+std] - [ardp
Then

T (E2) = a0 (2-85)
Where o, is the effective charge of E2 or before denoted by e, , S = — g a2 , and selection rules

for this symmetry are[16,17]

AX=0 (2-86)
Ap=0
Since the operator (2-85) is a generator of the SU(3) group all quadrupole transitions between
different multiplets are forbidden.
B(E2) is given by [69,70]

B(E2;(2N,0):L+2—L) = e2 3 [ (L42)(L+1)

H e <2L+5)] (2N-L)(2N+L+3) (2-87)
Here the factor (2N-L)(2N+L+3), which is not present in the equivalent expression for the rigid
rotor, has its origin in the fact that the number of bosons (N) is conserved. This factor gives rise
to the phenomenon that beyond a critical spin value the g.s. band B(E2) values actually decrease

with increasing spin.

For L=0

B(E2; 21— 0f) = & N2N+3) (2-88)
and for L=2

B(E2; 47— 2}) = €2 § (N-1)(2N+5) (2-89)

The ratio between eg. (2-59) and (2-60) can be written as [62,63,64,65]

N—1)(2N+5)

R =B(E2 4{— 2{)/ B(EZ 21— 0f) =2 [< o (2-90)
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If N— oo
R== (2-91)

The electric quadrupole moment for states is given by [61,62,63]

_ ’1671 L
Q|_ =-©€2 E m(‘]-N'l's) (2'92)

A typical spectrum obtained from this Hamiltonian is shown in figure (2-3)

O"’”)H
(120) (82 (4,4) (06) (60 (22) (0,0)
‘ * 4+ 3+ 1
. & 5 &8 7= =
3 2 + 6' 6 7 & 4 = 7
S 12+ 3+ -1-2I -41 44'_ 5+ i 2:= 2:=
§ - -+ 8 :?+ py =3 E 0 0
E 2 T + '£+ 6+— +
E i -|-=5+
g §= 7=
14+ &
A
0= SU(3)

Figure (2-3): A typical spectrum with SU(3) symmetry and N=6.in parentheses the
guantum numbers (1) and (p) appear [21].

2.1.3.3 Group Chain I11: O(6) symmetry
The third symmetry in this model is known as (y- unstable) symmetry, and it has 15 numbers

of generator in term of orthogonal group which used this following rule
(2-93)

Number of generator of O(n) = %n(n-l)

The generators are
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Gog=[dtd]$”, [ dd]$, [(d1 5 + st d)] P (2-94)
V/ if \’
3 5 = 15

We see immediately that also the generators of O(5), eq. (2.47) and those of O( 3 ), eq. (2.
49) are contained in this set, and its component O(2) from eq.(2-51) has only one number of
generator.

This yields a possible chain of algebras [66,67,68,69,70,71,72,73,74,75]

U(6) 2 O(6) 2 O(5) 2 0O(3) 2 0O(2)

VAR 20N 2R

[N] c (z,va) L M.
Following the group reduction O(6) the states are labeled as [20]

[y =1[N]o(7,va) L M) (2-95)

O(6) in this chain described by o which is a number of bosons which are not coupled to zero
angular momentum, and take [16,17,18,19,20]

oc=N,N-2....0 or 1 ; for N=even or odd (2-96)
The selection rule for seniority is

0< v<o (2-97)
Also O(5) defined by quantum number (z)

t=o0,0-1....1,0 (2-98)
The step from O(5) to O(3) is not fully decomposable then a new quantum number found
(va), which described the number of triplet bosons which are coupled to zero angular

momentum.
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The partition of 7 is

T=3VpA+A (2-99)
Where
Va=0,1,2 .... (2-100)

Then L takes
L=2A2A2 ... AL A, ... (2-101)

Or we can say
2V>2L = A (2-102)

We can classify scheme for the group chain 11l to show how it depended on the quantum
numbers shown in the table (2-3) [16].

Table (2-3): Classification scheme for the group chain 111

_ —

1
H
!
i

WO |O|RLr[(N|O|FR| O

w

0
0
0
0
0
0
0
0
1
2 0
1 0
0 0
1 0
0 0
4 0
1
0
1
0
0
0
0
0
0
0

OO IN|O(F, (N
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The Hamiltonian in terms of the Casimir operator is given by [16,17,18,19,20,21]

Hu=pCop +y Caopm+ & Caop) (2-103)
Where [21]
Caoe) =2N(N+4) -2[[(d .d1)-(st.sD][(d.d) — (5.%) ]] =2N(N+4) - 8(P". P) (2-104)

The eigenvalues are
E=2&c (otd)+2f1(7+3) + 2y L (L+1) (2-105)

Again, the various terms in the Casimir operators can be combined to write Hy, in the
convenient format of the multipole expansion [69,70,71]

Hu=ao (P*P) +ay(L. L) +as(Ts. Ts) (2-106)
Here the P*P term stems from the C,os Casimir, that is, from the presence of the subgroup O(6).
Due to the common use of the multipole Hamiltonian, the form of the (equivalent) eigenvalue

expression that has most frequently appeared in the literature is [69,70,71,72,73,74,75]

E==2 (N-o)(N+o+d)+ 2 a(t+3)+ (81 - 72) L(L+1) (2-107)

We can see that how change levels of energies with depended on their quantum number
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Figure (2-4): Low-lying levels of the O(6) limit, for N =6 [16,17].

Since T(EO) is diagonal in the U(5) basis states, it must require At = 0. Using Eqg. (2-25), it
is trivial to see that, in addition, Ac = % 2 is necessary to avoid a cancellation in the contributing
components. Thus the only predicted EO strength to the ground state is from the 6 =N — 2, £ =0

state, where the matrix elements take the form

(6 =N,7=0,L=0|T(E0)jc=N—2,7=0,L=0)=e, [(N‘”S(gv *fl))(f““)]l/ 2 (2-108)
Again electric quadrupole transition is given in Eq.(2-26) [17]

The B(E2) value for this symmetry connecting 6 = omax and L =2 1 is [16,17]

B(E2; t+1— 1) = e2 %(N-r)( N+ 1+ 4) (2-109)

For L=0 lower state Eq.(2-109) become
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2
B(E2; 2f— 07) = %B N(N+4) (2-110)
For L=2
B(E2; 41— 21) = e} = (N-1)( N+5) (2-111)

The ratio between eg. (2-110) and (2-111) can be written as [16,17]

R =B(E2 4{— 2{)/ B(E2; 21— 0f) =2 [% (2-112)
IfN—> o0
R== (2-113)

Also from the second selection rule and from T2 operator in the O(6), the electric quadrupole

moment will be
Q=0 (2-114)

A typical spectrum generated by the Hamiltonian is shown in the figure (2-5)

(GIVA)
(0,0)
(6,0) 61 (62 _, 40 {42,]) fi} o
2WTEre sz g 2224 2 T
2+ + 4t 3t ot E
weres 4z 4 ot
S +
%-’ + o4 ct gt + —
S| EEsA 2 T
o |
M g
4+ 2+
;_
ol Z 0(6)

Figure (2-5): A typical spectrum with O(6) symmetry and N=6.in parentheses the quantum
numbers (o) and (v,) appear [17,18,19,20,21].
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Since the SU(3) wave functions are complicated linear combinations of U(5) basis states
with many nq values, it is not surprising, first, that <nq>y. is larger than in either U(5) or 0(6),
or second that it changes little from state to state. Figure (2-6) illustrates this by showing the
values of < nq > for the yrast band calculated for all three limits by diagonalizing the appropriate
Hamiltonian. In U(5), changes in the (single) nq value characterizing each state are reflected
directly in the state-dependent behavior of various observables. In contrast, in SU(3), the value
of any matrix element normally results from subtle coherent effects, as befits a collective

deformed intrinsic state.

T T T T T
L= N =&
yrast levals
] = —
4 = SUl3] -
-.".l'ld:-
Ly —
Oiah
E — —
UiS
1 -
D ] | ] 'l
] 2 L] & =8 10 12

Figure (2-6): Expectation values of 7y in the yrast states for the three symmetries of the
IBA N=6[17].

Finally we can know Dynamical symmetry plays a major role in nuclear structure, they are
best understood in terms of the interacting boson model. The IBM model predicts the existence
of the dynamical symmetries which coincide with the geometrical shapes associated with the

rotation of deformed, prolate nucleus, a spherical harmonic oscillator and an oblate deformed
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rotor. Examples of all these cases have been found in nature. And each group described by self-
quantum number and the ratio between energy levels in any nucleus in each group depended on
that quantum number since like before discussion the ratio between energy levels are
Epy=1: Eny=2' En =3. En,—4=1:2:3:4 U(5)
EsEsEe:Es= 4 Ep—q: Er—pi E =3  E;—, = 1:25:45:7  O(6) (2-115)
E 5. E_4 E ¢ E;—g =1:3.33:7:12 SU(3)

The distinctive structures of the three dynamical symmetries in the IBA provide three clear-cut
limits of the general Hamiltonian. Although evidence exists which suggests that some of the
features of the pure symmetries are observed empirically in selected nuclei, in general, a
realistic calculation will require a departure from the strict limits or indeed a transition between
them. In this context the analytic limits emerging from the group theoretical treatment of the
Hamiltonian can be viewed as "benchmarks" in constructing a more accurate description of the
low-lying collective structure of a particular nucleus, or series of nuclei. This approach can be
illustrated diagrammatically in the form of the symmetry triangle in the figure (2-7) [17].

The three apexes represent the limits of one of the exact symmetries, while the space
enclosed by the three sides denotes the range of more general solutions that can be obtained
numerically by diagonalizing the IBA-1 Hamiltonian of Eq. (2-14). A transition between two
specific symmetries, without invoking any of the characteristics of the third, would correspond
to a path along one of the three sides, but a more complex path between two limiting cases is
clearly also possible [80,81]. For a transition along the sides, the structure at any point will be
determined by the ratio of the two parameters [see Eq. (2-14)] that characterize the symmetries

in question, and these are also indicated in the figure.
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Figure (2-7): Casten triangle which shows the transitional regions between the three
dynamical symmetries [17]

Three transitional regions can occur in the space of the IBM, as a result of perturbation of the
two limits [70,71,72,73,74,75], can describe in the following table

Table (2-4): classification of the transitional region in the space of IBM

U(5)-SU(3) SU(5) - O(6) SU(3) - O(6)

It contains U(5) and SU(3) |its region contains both | this region contains both
limits

SU(5) and O(6) limits

SU(3) and O(6) limits

A" =¢(ng +a(l.L) + ay0.0)
[2,3,65]

A" =¢ (ng) + a, (P. P) + ay(L. L)
+ay(T5. Ty)
[2,3,8]

g — a, (p.p) + al(i.i) +
2,(Q. Q)
(3]

The solution of Hamiltonian

depended on the ratio (g/ay)
,for large (¢/a,) the spherical
solution dominates or U(5).
While for (g¢/a2) — 0 (small),
the SU(3) will be dominates.
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The nuclear structure
depended on the ratio (g/ay),
for the large (¢/a,) the U(5)
will be dominates but for the
small (g/a,) the O(6) will be
dominates.

The solution of Hamiltonian
depended on the ratio of
(a0/ay), for large (ao/az) the
O(6) limits dominates, while
for (ap/az)— 0 (small) the
SU(3) dominates.
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2.2 Interacting Boson Model-2

Further developments were made to extent the space of IBM, in IBM-2 version, where
distinction between neutron bosons and proton bosons was made. This assumption allows IBM
to describe states interpreted as neutron-proton interaction. The microscopic picture of the IBM
is very complicated. A commonly used microscopic picture is given in terms of collective pairs
of nucleons. The s and d pairs of valence nucleons have angular momenta J = 0 and J = 2,
respectively. These pairs correspond intuitively to the s and d bosons, respectively. The building
blocks of the IBM-2 are the proton bosons s,, d, and the neutron bosons s,, d,.in the IBM-2 We
tried to keep to a minimum number of free parameters in the Hamiltonian and we thus
considered equal values for the neutron and proton d-boson excitation energy, in addition to the
standard quadraupole interaction and Majorana term. We only considered the dipole neutron-
proton boson interaction whose strength is characterized by a single parameter Mg,
[61,62,63,64,65,66]. One should expect, however, to obtain a more realistic description of
nuclei by treating protons and neutrons as different particles, as they are. One introduces proton
bosons s, and d, as well as neutron bosons s, and d, [16,17,18,19,20,21]. The total number of
proton bosons introduced equals the number of valence proton pairs (particles or holes,
whichever is minimum) in the nucleus under study. Similarly, the number of neutron bosons
introduced equals the number of valence neutron pairs (particles or holes). Since in medium and
heavy nuclei the valence protons and the valence neutrons occupy different major shells, no
proton-neutron pairs can be treated as a mean field interaction between the proton bosons and
the neutron bosons. The IBM-2 can be used to the description of the low-lying energy levels and
the other spectroscopic properties of heavy nuclei such as quadrupole moment and M1 transition
on proton-neutron degree of freedom and on the other hand can predicted the mixed symmetry

for the nuclei [69].
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2.2.1 IBM-2 Hamiltonian

The IBM-2 has special practical significance because its parameters depend on a smoothed
curve on z- and v -boson numbers and it makes possible to calculate unknown nuclear spectra.
The interest in the algebraic structure of the IBM-2 has even grown since states with special
magnetic dipole properties are known which can be explained with group theoretical methods.
The numbers of w-bosons Nx and v-bosons Nv are fixed equally. There is no boson composed of

a proton and a neutron. There exist 12 creation operators for bosons

b jm = St (M=2:1,.....2) (2-116)
, and
b =5t dl, (M=-2-1,.....2) (2-117)

And we have the same number of tensor operator for boson annihilation like this

bn,jm =Sz, dn,m (m :_21-19--"'a2) (2-118)
,and
Ev,jm =Sy, d~v,m (m =-2,-1,.....,2) (2-119)

In analogy with commutation relation every d- or s-operator for protons commutes with
every d- or s-operator for neutrons. We demand that both N, and N, are good quantum numbers
i.e. the Hamilton operator must meet the condition
[HN:]=[H N]=0 (2-120)
The total number of the bosons (N), is equal to the total number of proton bosons (N,) and

neutron bosons (N,) [61] i.e.

N=N,+N, (2-121)
With the operators
Nz = V5 [df X dp]° +57 57 = Agy + Aar (2-122)

55| Page



Chapter Two The Interacting Boson Models (IBM)

The corresponding

Ny =5 [df x d,]° +s] s, =g, + Agy (2-123)
The IBM-2 Hamiltonian is modified with respect to the original IBM-1, therefore the vector

space of the IBM-2 is then just product of all possible states (s , d)™ with those of (s ,d)"", and

where in each factor the set of states is the same as in IBM-1. [76,77,78,79]

H=H,+H,+V, (2-124)
Both A, and H, have the form of the IBM-1 Hamiltonian are for proton and neutron bosons

respectively, but there is nothing than z- operator in H,, and v-operator in H,, and the third part

describes the interaction between them and can be written for proton and neutron both together

as

Do = Bimo24 5 V2L + 1C x [ (dTpx d'y)" (dxd)]® (2-125)
Where

p=morV (2-126)

The IBM-2 Hamiltonian which usually used in numerical calculation has form [76,77]

—~ ~

H = 8dTL'ﬁ'dTL' + deﬁdv + K@TL" Qv + wTL'ZTL" ZTL’ + (l)vzv. Lv + MTL’U (2'127)
Where 7i;,and 7, refer to the number of proton and neutron bosons and can take as

g, = (d}® d,) (2-128)
Q and L in the equation(2-127) are quadrupole interactions and angular momentum respectively

can be written as

QF =[d™x 3 + stx d]2 +y, [AT® d]? (2-129)

®
]

L,=v10[d}® d, (2-130)
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the quadrupole operator in quadrupole-quadrupole interaction between proton and neutron,
x(xv) represents the proton (neutron) quadrupole deformation parameter[ 77,78,79].w, is the
strength of the dipole among like nucleon interaction. And M, is the Majorana interaction acts
on the states, which are not fully symmetric under the interchange of the proton and neutron

degrees of freedom. The (&2) and (k) are the parameters of the strength of this interaction.
My, =& [ six df - 57 xdf 1 [§yx dy - $ox dy)* -2 B=1 3 Ecldi x dF 1. d, x dg]®™ (2-131)
Kk is the quarupole-quadrupole interaction strength.

2.2.2 Electromagnetic transition operator

The IBM-2 can interest to calculate some other important observable quantities such as
transition operator. For transition operators, it is convenient to introduce parameters with a
direct physical meaning. These are called effective boson charges and moments, and in general

the transition operator can be written as [61]
TO=1® +7® (2-132)

Where 7" and T are the already known IBM-1 operators with the proton or neutron label
attached to them. Have the same as (2-24 to 2-31). They are defined in the following way. For

EO transitions we can written as [16]
T = fing, + fyna, (2-133)

The most commonly used transition operator is quadrupole one (i.e. the E2 transition) which can

be put in the form
TE2) =g 0, +e,. 0y (2-134)

E4 transition is
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A~

TED = ¢ 7 +t,V, (2-135)

Where f,( fz, ), €, (er € ) and t, (¢, t;,) are the protons (neutrons) effective charges of the
EO, E2 and E4 respectively. The protons (neutrons) boson effective charges are assumed to
depend only on the number of protons (neutrons). In calculations they are usually kept constant.
And can be calculated microscopically, and Q, has in the Eq.(2-129) but 17,, can be written as

~ 1@
]

) (2-136)

For the magnetic transitions, one introduces boson effective g —factors. For MI transitions

(Magnetic dipole transitions) are also especially interesting, the relevant transition operator is

3 ~ ~
T(Ml) = \/;T (ngv+ gnLn) (2'137)

While for M3 transitions they are defined by
TMI = \/; (m, U,+ m,Uy) (2-138)

Where g, (9 ,» gv) and m,(m, , m,) are protons (neutrons) factors to the moments M1 and M3
respectively, and can be calculated microscopically. The g-factors are assumed to depend only
on the number of protons (neutrons) boson number. Notice that while in IBM-1 all M1
transitions were forbidden if only lowest order terms were included in the transition operator,
here this is no longer the case if g, # g, . Thus the need to include higher order terms in the
M1 transition operator in IBM-1 in order to allow for M1 transitions to occur can be seen as a

way to simulate the proton-neutron degree of freedom in the IBM-1 framework, and Ep has in

Eq.(2-130) but U, can be written as

0,=[d® a,]” (2-139)

We turn now to nuclear radii. Nuclear radii can be calculated in the interacting Boson

model-2 from the expression [21]
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(r2) = (12 + ANy, + AN, + ag(ng, ) (2-140)

)(C)

Here (r;2)" is the r.m.s. radius of the closed shell and (ndn) expectation value in the ground

state of the nucleus with N,(N,) is the proton (neutron) bosons and proton d-boson number
operator ng_ is ci,t . d ;. The two terms A,N, (p = m,v) describe the overall increase in radius
due to the increase in the number of particles, while the last term an(ndn) describes the
contribution to the radii due to the proton deformation. Nuclear radii are usually measured
relative to the closed shell nuclei.

2.2.3 Dynamical symmetry

The algebraic structure of the interacting boson model-2 is at first sight a trivial extension of
that of the interacting boson model-1. However, it turns out that if one wants to exploit the
concept of dynamic symmetries introduced in IBM-1 dynamical symmetries, a much larger and
richer variety occurs here. The proton bosons introduced span the dynamical group U,(6), while
the neutron bosons span the dynamical group U,(6). Addition of the proton degrees of freedom
to the neutron degree of freedom is achieved by taking the direct product of the two groups [69],
Gru, 6y = Un(6)®U,(6) (2-141)
By using Eq.(2-34) the number of generator , this group has 72 generator, i.e. the 36 generators
of U,(6) and the 36 generators of U,(6). Thus, We have 72 generators of the U(6) group can be

written down explicitly

Gu, &)= [s+§]8f’3,[dfd]é‘,’;,[df]ﬁz, dflﬁz, dard1S) [ drd1$). [ dts1 3 std]) (2-142)
T —> 1 1 3 5 7 9 5 5 = 36
v > 1 1 3 5 7 9 5 5 = 36

The main question then is how to reduce the algebra G to the rotation algebra [16], O(3),
which we want always as a subalgebra, since nuclear states are characterized by a good value of
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the angular momentum. Since protons and neutrons are rotated simultaneously [69], the

generators of O(3) are obtained by summing those of the two rotation algebras, O,(3) and O,(3)
31(1 31(1
Go,»= [ dtd]$) + [ did]S,) (2- 143)

3 3
This corresponds to the familiar addition of angular momenta for protons and neutrons,
L=L,+1L, (2-144)

Since each of the U(6) algebras has a rich subalgebra structure, there are a variety of ways in

which the algebra Gru,(e)) = Ur(6)®U,(6) can be reduced to O(3). These are called lattices of

algebras and we shall discuss here some in detail. We begin by considering the trivial case in
which the only common algebra is that of O(3). This can be schematically written as [15]
Ux(8) = Ox(5)

~

Ux(6) = SUx(3) >_ Ox(3)

N 0x(6) —> Ox(5) / \

Oril(3)—=> Orinl(2) (2-145)

Uu(5) — O.(5)
/ -

Uy(6) —>SU\(3) / Oy(3)

Where we have added a subscript = + v to O(3) in order to indicate that it is obtained by

Ov(6) —> Ov(s)

summing the generators of O,(3) and O,(3). From the practical point of view, this case is not
particularly interesting since it does not produce anything new, although in here yield the
possible chains in the IBM-2 begging with U+ (6) [15,16]

Ux(6) ® Uy (6) D Ursy (6) D Uns (5) D Ores (5)2 Ort o(3)2 Ors o(2)  (H') (2-146)
U(6) ® Uy (6) D Unsy (6) D SUn+ y(3) D Ot v(3)2 Ort o(2) (H" (2-147)

Ux(6) ® Uy (6) D Unty (6) D Ort (6) D O+ (5)2 Onto(3)2 Ot (2)  (H")  (2-148)
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One thus recovers the symmetries contained in IBM-1. Clearly, these chains remain unchanged
if the proton and neutron labels are interchanged. The states of the IBM-2 are characterized by
two — row irreps { N- f ,f } of U, (6) where N is the total number of bosons and

f=0,1 .... Min (N, N,) (2-149)
2.2.3.1 Vibrational limit (U, «(5)) : (H") chain

In order to provide a complete classification scheme we now need to reduce representations
of U,,,(6) to those of its subgroups. For totally-symmetric representations, which were the
only ones occurring in the interacting boson model-1, the reduction was given in Sect. (2.2.3)
here, however, we need the reduction also for mixed-symmetry states. The rules to obtain this
reduction are much more complex. In general this chain describes the vibrational nucleus, it has
25 numbers of generator for proton bosons and 25 number of generator for neutron bosons in

term of unitary group with used the eq.(2-34). We can write it [16]

Gupoois) = [d1d1S0 [ dtd]$ [ did] 20 [ did] ) [ did]S) (2-150)
m —>1 3 5 7 9 = 25
v > 1 3 5 7 9 = 25

like IBM-1 in here U(5) has subgroups O(5) with contain O(3) and component O(2), but in here
generated to protons and neutrons such as discuses in Eqgs.(2-47 ,2-49 and 2-51) but in here
separately for proton and neutron number [69]. Some quantum number is a good quantum
number to characterized this chain, hence the quantum numbers needed to classify the states in

this chain are [15, 16]
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Ux(6) ® Uy (6) 2 Un+y (6) 2 Un+ v(5) 2 On+ V(S)D On+ v(3)3 On+ v(2)

T

[N.][ V] (N-f, 1) gz, Nav)  (Vo, W L M

The quantum number o is [fi;,, fi,,] @ quantum number required to completely specify the
reduction O(5)> O(3), that is [7i;,, 7,,] represents missing labels. Because of the complex
structure of the chain, we digress briefly here to discuss the question of how many labels are, in
general, needed to classify uniquely basis states of a group generator.

For some special cases, the number of missing labels is reduced. For example, if the O(5)

representations are totally symmetric [16], the selection rule for seniority begin
V=V, =0 (2-151-a)
As it is the case in the interacting boson model-1, only one missing label is needed,
flga = fip, iy =0 (2-151-b)
we note that the representations of Ur+ (6) , Un+(5) and Ox+ (5) are all two-rowed, i.e.

[I’V\TL'I I’V\v] = [Nnr Nv: 0)0)0)0]
(ndT[ ’ ndv) = (ndT[ » Ndp, 0'0'0) (2'152)
W) =W w)

The values of (ngy,nq,) contained in the representation [N, 0] of Uxr+ , (6) are given by

Eq.(2-53). For the representation [N — 1,1] they are

(ngn ,ngy) = (N=1,0),(N — 2,0), ...., (1,0);

(N—-1,1),(N=21),....,(1,1). (2-153)

Similarly, the values of (v ., 1,) contained in the representation (n, 0) of U+, (6) are given by
EqQ. (2-54). For the representation (n — 1,1) they are

W v,) =(n—20),(n—4,0),..(2,0) or (1,0); (n = odd or even)
(n-—1,1),(n-3,1),..(2,1)or (1,1); (n = odd or even). (2-154)
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Finally, the values of L contained in a representation (v,0) are given by (2.58). Those contained
in(v—1,1) are

L=2v—-12v—-2,..3;
v—1 v-2,.,1, (v=2)
v+1, v, .0, (v=4) (2-155)
v+2, v+1,..,7, (v=5)

These rules give the results shown in Table (2-5)

Table (2-5): Partial classification scheme for chain |

L

7,6,5°4,3°2,1
31
2
54,3,2,1
31

The wave function which describes this chain is given as:[15,16,69]

|¢> = |[Nn][ﬁv] (N - f}f) (nth rndv) (vn' »vv) a. L M) (2'156)

The Hamiltonian is given by

H'= A1 Crumsy ) TA2 Covrwy 5)+B Coomrvis) + C (C2 0mryz) +aM (2-157)
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The eigenvalue for this chain is given

(H'Y = A1 (Ngx + C) + Az (Nun(Ngr +4) + Nan(Naxt2)) + B (Ve (Ve +3) + Wy (W +1)) + CL(L+1) +
a(-F) G +F+) (2-158)
Un+ (5) dynamical symmetry (vibrational nucleus ) arises when yx, =0 (p=r ,v). The spectrum of

states corresponding to energy level is shown in Fig. (2-8).

— I
|
[3,0] | (2,1]
|
| 5t
I 4+— + ,
1t | e " -
4
. lge_
=3 Y
> , 0t I—
= 7 = |
Q |
= pall |2
ot |
l_ |
I
%
|
|
[ U,..(5)
of 0= : i

Fig. (2-8): A typical spectrum only the lowest states of the irrep [N] and [N-1] with
Ur+v (6) D Urs(5) symmetry in IBM-2, and N, = 2,N,=1.[16].

2.2.3.2 Rotational limit (SUx+,(3)) : (H") chain

In general this chain describes the rotational nucleus. It has 8 numbers of generator for proton
bosons and 8 number of generator for neutron bosons in term of special unitary group with used

the eq.(2-70). We can written as
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Guy= [ did]jy, [(d1 5 + st )2, =7 [dd)S) (2-159)
T —> 3 5 = 8
v —> 3 5 = 8

These generators can be rewriting as
Gsuay={ Loy » Oy (2-160)

Where Q and L are angular momentum and quardupole operators respectively from equ. (2-
129) and equ.(2-130). This group has again O(3) as a subgroup with 3 number of generator and
its component O(2) has only one number of generator but in here generated to protons and

neutrons such as discuses in Egs.( 2-49 and 2-51) but in here done separately for proton and

neutron number. In the definition of the quadrupole operator in principle also +§\/7 is allowed

instead of —%\/7. This sign change makes no difference in the calculation of excitation
energies, it will only change the sign of the quadrupole moment hence in the SUxr+ (3)

limit(rotational nucleus) arises when y,= * \/2—7 (p=m ,v). Again some quantum number is a good
quantum number to characterized this chain, hence the quantum numbers needed to classify the
states in this chain are given by [15,16,69]
Ux(6) ® U, (6) D Ursy (6) 2 SUr+(3) D Ont(3)2 Ot v(2)
Lol
[N=1[ V] (N-f, 1) (A, ) K L M
In addition, a quantum number K is needed to fully specify the reduction from SU(3) to O(3).

That K is missing labels. The representations (A , ) contained in a representation [N,0] of U(6)

are given by (2.75). Those contained in a representation [N — 1,1] are
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(A = (T, 1), ([ =22), ([ —31), I —43),( —40)(T—-5,2),
r>1 r>4 =5, (2-161)

With T other quantum number is
[=2N —2,2N —8,2N — 14, ... .... (2-162)
Other selection rule and the reduction from SU(3) to O(3) is the same as in EQ.(2-76,2-77

and 2-78) are given in IBM-1 calculation. These rules give the results shown in table (2-6)

Table (2-6): Partial classification scheme for chain Il

32,1

54,32, 1

4,320
2,1

76,54,32,1
6,54°,3,2,0
432,1
5,4,3,2,1
2,0
32,1
The wave function which describes the states of this chain are specified as

|¥) = |[NI[N,] (N= £,f) (A, 1) KLM) (2-163)

Then the Hamiltonian in this chain is given by [15,16,21,69,75,76,77,78,79]
H'" = OC_Czo(g) +f5 Czsu(3) +y M (2-164)

The eigenvalue is
<H'>=a L(L+1) + (07 + 0%+ 00+ 30 u) + (5 -F) (5 +F+1) (2-165)
The Majorana term was written in terms of boson operator in Equ. (2-131) for &;=£,=&3 , the

Majorana to the quadratic Casimir operator of Uqy (6) as
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1
M == [N(N+5) - Coy,y o)) (2-166)

The spectrum of states corresponding to energy level is shown in Fig. (2-9).

]
I
I
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E 2 |4+ 2V — 2t —
a3 | . o —
0r— |3
A
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1} 2F e D | —
6+—. O0'— |
|
= ' SU, ,.(3)
2 — i
0 o+— 1 —
]

Fig. (2-9): A typical spectrum only the lowest states of the irrep [N] and [N-1] with
Ursv (6) D SUrs+(3) symmetry in IBM-2, and N, = 2,N,=1.[16].
2.2.3.3 (y- unstable) limit (Ox+(6)) : (H") chain

In general this chain describes the (y-unstable) nucleus, it has 15 numbers of generator for
proton bosons and 15 number of generator for neutron bosons in term of orthogonal group with

used the eq.(2-93). It can be written as [16]

Gowy, = [ dd],, [dtd]5), [(dT 5 + st )] (2-167)
\% \’ \2

T 3 7 5 = 15

v 3 7 5 = 15

like IBM-1 in here O(6) has subgroups O(5) with contain O(3) and component O(2), but in here

generated to protons and neutrons such as discused in EQs.(2-47 ,2-49 and 2-51) but in here
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separately for proton and neutron number. And in the Or+ (6) dynamical (y- unstable

nucleus) , the () and (x,) have opposite sign ( - g <% <0and0< 1y <+ g) . Again
some quantum number is a good quantum number to characterize this chain, hence the quantum
numbers needed to classify the states in this chain are [69]

Un(6) ® Uv (6) > UT[+V(6) D Or+ v(6) D On+ V(S)D On+ v(3):) Or+ v(2)

A

[N,][ N,] (N-f,1) <6m, 0v> (To, T) Y L M

Where y is (vya, Vya) representing missing labels, it is necessary to completely specify the

O(5) o0(3) reduction. The representations of Ox+(6) and Oxr+ (5) are two-rowed

(Or, 0y) = (0,0, 0)
(T, Ty) = (T, Ty) (2-168)

The representations (o, 0,,) contained in a representation [N,0] of U+ (6) are given in (2.96).
The representations (o, g,,) contained in [N — 1,1] are given by

(0g,0,) = (N —2,0),(N —4,0)...,(2,0)00r (1,0) (N = even or odd);
(N-11),(N-31),..,(21)or(1,1); (N = odd or even) (2-169)

The representations (t,,T,) contained in a representation of (c,0) of Ox+ ((6) are given by
(2.98). Those contained in (¢ — 1,1) are given by [16]

(tp 1) = (6 —1,0), (6 — 2,0), ..., (1,0);
(c—1,1),(c —2,1),..,(1,1) (2-170)

The reduction from O+ (5) to O+ (3)is the same as in (2-158). These rules give the results

shown in Table (2-7)
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Table (2-7): Partial classification scheme for chain 111

54,321 |

2
7,6,5°,4,3°2,1

3,1
2
3,1

The wave function for the states are fully characterized as [69]

W) = |[N][N,] (N= f,f) <0n0p> (T, T) V.LM) (2-171)
And the Hamiltonian will be as [67.69]

H" = AC20n+ () + BCo0m+ v(s5) + CCo0nt y(3) +aM (2-172)
The eigenvalue is [75,76,77,78,79]

<H"> = A (0x(c:+4) + 6y(0y +2)) +B (Ta(T:+3) + Tu(T+1))

+CL(L+1) +a (5 -F) (5 +F+1) (2-173)
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The spectrum of states corresponding to energy level is shown in Fig. (2-10)
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Fig. (2-10): A typical spectrum only the lowest states of the irrep [N] and [N-1] with
Un+y (6) D Ons(6) symmetry in IBM-2, and N, = 2,N,=1.[3].

2.2.4 Mixed-symmetry

When the proton-neutron degree of freedom is included in the interacting boson model,
additional classes of states called mixed-symmetry states are allowed. When compared to their
symmetric counterparts, these states have a negative phase factor between the proton and
neutron boson components of the wave function. The experimental signatures for these mixed-
symmetry states are strong Ml transitions to symmetric states. In the IBM-2, proton and neutron
bosons are treated independently, and this results in an additional degree of freedom, which
essentially can be thought of as a phase factor between proton and neutron components of the
wave function. When all of the proton and neutron bosons in the system are in phase, the state is

considered to be a symmetric state. These tend to appear at lower energies in the system and are
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analogous to the states that are found in the sd-IBM-1. When some of the proton and neutron
bosons in the system are out of phase, an additional class of states appears that are called mixed-
symmetry states [15]. These states can be illustrated geometrically with some of the proton and

neutron bosons oscillating or rotating out of phase, and an example of this can be seen in

Fig.(2-11)
« | V) Symmetric
' -(— ' ) Mixed-Symmetry
Vibrator Rotor

Fig.(2-11): Geometric illustration of collective motion in symmetry and mixed-symmetry
states in IBM-2 [15].

As we have seen, the major difference between IBM-1 and IBM-2 is that the latter contains a
whole class of states, the mixed symmetry states (MISS), which are completely missing from
IBM-1. In the early days of the model the existence of MISS was a puzzle, since they were
predicted to occur at rather low energies but no such state had been seen experimentally. It was
then argued that “obviously” these states were lying very high in energy, and the coefficient of
Majorana term in the Hamiltonian was made “big”, in order to push the MISS far up in the
spectrum. Actually, this was the reason the Majorana term was introduced at all. In the IBM-2,
matrix elements of the F2 operator can be directly calculated in order to evaluate the proton-
neutron boson symmetry of each state. Experimentally, such matrix elements are not observable,

so other signatures for mixed-symmetry states are important to identify. In the IBM-1, off-
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diagonal Ml transition matrix elements vanished, due to the L operator referring to total angular
momentum, which is a good quantum number for each state. This means that L only effects
diagonal terms in the Hamiltonian [69]. The Ml operator in the IBM-2 is constructed from a sum
of L, and L,,, which can be seen in Eq. (2.137) To help illustrate how the MI operator behaves

in the IBM-2, it can be rewritten in the following way:

TM1) = | ((gr + 90) L + L) + (G = 9) (L — Ly)) (2-174)

The term with (L, + L,) refers to the total angular momentum, which is a good quantum
number for each state, and it therefore only affects diagonal terms of the Hamiltonian. That
leaves the term with (L, — L,,) as the only part that contributes to MI transition matrix elements
between states. The operators L, and L,, conserve the underlying U(5) quantum numbers, so the
(L, — L,,) term effectively creates a phase difference between proton and neutron bosons, and
can change the F-spin of a state [15]. The matrix elements of the MI transition operator can be
large between states of different F-spin, and an example using the Uz, (5) Hamiltonian from

Fig.(2-12) will help illustrate this.

U,,.(5) Hamiltonian
H = €e(fq, + a,) + MM |
Np=N, =1 0 o
2¢ +2) ¢ — [df d!)E)|0)
+
) c+onf -2 %(d]}s}, — stdh)[oy
+ +
2¢4 420 [dldi]®(0)
1
et 2= Z(disl +stdl)l)
+
ol L ststo) 0t
Symmetric Mixed-Symmetry

Figure (2-12): lllustration of states in a two boson Ux+, (5) Hamiltonian using the IBM-2.
F-spin is a good quantum number for this Hamiltonian, and the Majorana operator
simply shifts the mixed-symmetry states up or down by the parameter A [13].
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The MI transition matrix elements between states with F = Fpa vanish, because the phase
difference created by the (L, — L,) term of the operator causes the terms in the matrix element
to completely cancel. That is, M1 transition can be used to identify the mixed symmetry of
states.

Another interesting point is the Majorana terms &; (with i=1,2 and 3 ) is to specify the mixed
states from symmetric and controlling the energy of such states with cross pending to these in
experimental data. This dependence of level energy on the Majorana term is a good indication
that contains a mixed symmetry contributions. In the U(5) [15,69,75,80,81] limit the mixed-
symmetry states can be interpreted as vibrations of the neutrons and the protons which are out of
the phase, in contrast to the symmetric state, associated with a simultaneous vibration of the
neutrons and the protons, in the SU(3) limit mixed-symmetry states formed if the deformation
distributions of neutrons and protons do not coincide , however, that the shape of the
distribution itself is the same for neutrons and protons (either prolate or oblate ) in SU(3) which
is the geometrical analogue of the conditions of F-spin symmetry in the algebraic model.
Finally, for the O(6) limit the geometrical interpretation is similar to the SU(3), but in this case
the shape of the neutron and protons distribution ranges continuous from prolate to oblate (y-
unstable) [75,80,81].

it is convenient at this point to introduce a quantum number called F-spin. A particularly
important property of the IBM-2 is that each proton-neutron symmetry described of each state is

specified in terms of a new quantum number called F-spin [15,16], The F-spin can be defined as
_f (2-175)

The zero- component is

~

Fy==(N,— N,) (2-176)

N |-
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Then one can characterize the states by the quantum numbers N, F, and F,. Clearly the totally
symmetric states span the one —row irrep of Ur+ , (6), [N,0]. Thus they are characterized by
=0, which implies that they possess the maximum possible value of the F-spin is

Frax = 2N == [N + N,] (2-177)

N |-

It is clear that the states of maximum F-spin are in one to one correspondence with the states of
IBM-1. States with F-spin less than the maximum value of g have no counterparts in IBM-1.

They have mixed proton-neutron symmetry character, thus they are called mixed symmetry
states [75,76,77,78,79]. That is when F= Fnax , the IBM-2 states become fully symmetric and
reduced to the state of the IBM-1 , but if the F < Fya  the states have no counterpart with IBM-
1, they have mixed p-n symmetry and they are called mixed state symmetry (MS). The F-spin

operator is constructed in the following way [15]

Ft=st5,+dt. d, (2-178)
F=sts +df.d, (2-179)
F=st.5,-st.5, +dtd,-d}d, (2-180)
F?= F*F + FOR°- F° (2-181)

The F? operator can be directly evaluated as a two-body matrix element of states from an IBM-2
calculation, which gives information about the proton-neutron boson symmetry of the state.

When F-spin is a good quantum number for a Hamiltonian, the maximum value it can have is
Frax= % [N, + N,] and this corresponds to a symmetric state. For a mixed-symmetry state with
one proton boson and one neutron boson out of phase, F = Fmax — 1. The minimum value that

F can have is Fmin == |N, — N,|.

N |-
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2.2.5 Delta mixing ratio

Delta mixing ratio can produce when the E2 and M1 transition between two states are

allowed both together, and it is the reduced E2 and M1 matrix elements [15]

UFITE2)NJ;) (eb)
UJITMDIT) (un)

A(E2/M1) = (2-182)

And related to the conventional experimental mixing ratio ¢ (E2/M1) according to the

ref.[80,81]

(eb)

0 (E2/M1) = 0.835 E, x A(E2/M1) -~
N

(2-183)

Where Ey the transition energy in (Mev), whereas A(E2/M1) is essentially a geometrical factor
depending on the angular momentum of the initial and final state. An interesting aspect of the
IBM, from the point of view of the mixing ratio, is the treatment of the M1 operator [15]. In the

IBM-1 the lowest M1 transition can be vanishing, since it is described as one body operator and
characterized with B;[ d* x d]ff) since it is proportional with total angular momentum, but in

higher-order term it cannot vanish. And in (IBM-2), the lowest-order M1 operator is no longer
proportional to the total angular momentum operator and hence, in general, M1 transitions are
allowed. In here the delta mixing ratio in IBM-2 is produced to reduce the matrix element

between E2/M1.
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Chapter Three

Computer programs for IBM-1 and IBM-2

In this chapter, we describe the computer program to calculate the nuclear properties for Zr-
nuclei by using interacting boson model for both versions (one and two) [84,85]. We have
already been installed on pc-computer and used the Fortran power station-90 software to help
that purpose. We have two main versions for that program IBM-1 (called version one) and IBM-

2 also (called version two).
3.11BM-1

By using this program, this version can calculate some properties of the nuclei theoretically
as energies of states with possible angular momentum for states, the matrix elements for
quadrupole moment and electromagnetic transition probabilities, and coefficients of the
potential energy surface of the nucleus. In this version, we have a file called (IBS1.for), whose
type is Fortran type and can be used to calculate the above properties when we can run from
Fortran power station by connecting both (IBSL.for) and (Eigsad.for). This is schematically
illustrated in figure (3-1). Both (IBSL.for) and (Eigsad.for) are two other main programs in this
version, each of them which can be used for a special purpose. (IBSL.for) can be used to solve
the Hamiltonian matrix elements of one and two body terms, because it contains a number of
subroutines that work like sub-programs for a number of functions. On the other hand, (Eigsad)
program can be used to calculate the binding energy and to produce the diagonalization of the
Hamiltonian matrix elements, since this aim is useful to calculate the eigenvalues and

eigenvectors for all levels with definite angular momentum of the state.
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When we compile the (IBS1.for) in the Fortran power station to obtain the objective of that
file at the same time, insert both (IBSL.for) and (Eigsad.for) program to that file and both
together can be compiled in the Fortran, and we can produce a link between them to make an
executable file or running file, called (IBS1.exe) whose type is (exe or application file). And, we
can input data in here to found above properties of the nucleus. The input data that can be used
for IBM-1 version are the total boson number of the nucleus, and the Hamiltonian parameters
such as &,ay, a;, a, as, a4 and y. But to calculate the perfect energy levels here, we wanted the
other main program called (CFP.for), must be compiled in the Fortran power station and linked
to produce the executable (application) file since the output of this file (CFP.OUT) is used as an
input parameter and can be calculates the one body coefficient of fractional parentage and the
CFP.OUT file stored and then used to calculate the electromagnetic transitions between these
levels. When we want to run the program (IBS1.EXE), the input file must have contained the
information, data and parameter of Hamiltonian matrix. That file is the file.Dat type. We
inputting the names of that file into IBS1.EXE and must be equal or less than 9 character
because in the IBS1.FOR we mentioned that the input and output can take 9 characters or less
than 9. Here, we can named the input files as ZrA.inp, where A is the total number of the
nucleons (proton and neutron) of the nucleus. After running we can obtain the same file for

output such as ZrA.out.
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IBSL.FOR (compilation) — IBSL.OBJ

IBS1.FOR (compilation) — IBS1.0BJ after linking (IBS1.EXE)
Eigsad.FOR (compilation) — Eigsad.OBJ

CFP.FOR (compilation) — CFP.OBJ (linking) — CFP.EXE (running)

IBS1 CFP IBSL | Eigsad

Zrnn.inp Input data

€, dg,a), A2, A3, A4, f

/ EIG.OUT

Require to take
Zrnn.out the B (E2) value
in later step

Contain the parameters
and input data in type
of file.dat

Contains all outputs like as
energy levels, J7, ......, and
data in type of file.dat

Figure (3-1): The structure of IBS1 code.

The above structure of IBS1 program cannot obtain the electric quadrupole moments (Q3)
and the electromagnetic transitions probabilities B(E2), so they must be found in another
program in version one. That program is called (IBST.FOR) that contains the information about
(QF and B(E2)) and it’s a main program of the version one to calculate the electric quadrupole
moments and B(E2) values for the nucleus. The running of this program is similar to the 1BS1
program, which we can compile in the Fortran power station connected with IBSL.FOR and
EIGSAD.FOR together, and we make a link between them to produce the IBST.EXE file. As in
IBS1 program, we need to compile and link the CFP.FOR file for this program. The IBST
program should be executed directly after IBS1 program, because IBS1 program produces a
file.dat from functional statement of the EIGSAD program called EIG.INP which contains data

required in the calculations of B(E2). And, in the IBST program we need the input file.dat type
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and named by BE2.INP, that contains the value of effective charge e2 for protons and neutrons
and in version one does not differentiate between the protons and neutrons. With y, SO(6)
parameter takes a constant value for all isotopes and the value of angular momentum(J), as well
as an input parameter. This is required to find the electric quadrupole moments and initial and

final states which are needed to find the B(E2) between them. And, the structure of the IBST is

illustrated schematically in the figure (3-2).

IBSL.FOR (compilation) — IBSL.OBJ

Eigsad.FOR (compilation) — Eigsad.OBJ

IBST.FOR (compilation) — IBST.OBJ after linking (IBST.EXE)

CFP.FOR (compilation) — CFP.OBJ (linking) — CFP.EXE (running)

moments for states data in
type of file.dat

IBST CFP IBSL |Eigsad
BE2.INP / Input data
N 2 .
Contain the parameters Neg 1.50 ©)
and input data in type Ji = ]5 For each
of file.dat
States we need \
OUT
SEEOH EIG.INP
Contains all outputs like as B Regquire to take
(E2) between state and Q the B (E2) value

Figure (3-2): structure of IBST program
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3.2 IBM-2

Here we can also calculate the properties of Zr- nuclei by using the interacting boson
model-2, which is distinction between protons and neutrons. By using the Fortran power station,
and in this version to calculate the eigenvalues and eigenvectors for all states with definite
angular momentum itself, we can use the (NPBOSN) program, since in term of this program we
can diagonalize the Hamiltonian matrix elements. And to calculate the electromagnetic
transitions between states and moments of the nuclei, we can use another program called the
(NPBTRN) program since in program has a useful function to calculate the electromagnetic
matrix elements between eigenstates. For the first purpose to calculate eigenvalues and
eigenvectors for all possible states, we need some coefficients and parameters to put into the
(NPBOSN) program, such as coefficient of fractional parentage (c.f.p), Racah coefficient and d-

boson number for one-body operator matrix element.

And, to create one body and two body c.f.p.’s for states we can use two other programs
(CFPGEN) and (NPCFPG). By compiling and linking the (CFPGEN) program in the Fortran
power station, the produced (CFPGE.EXE) file can create one body (c.f.p) for states and store in
the file.dat called (cfpl). On the other hand, to produce the two-body (c.f.p) for states, we use
the (NPCFPG) program in the Fortarn power station, when compiling and linking can obtain an
output file.dat named by (cfp2). In the (CFPGEN) program, we need the total number of boson
to input data and need the maximum number of d-boson to input data for (NPCFPG) program.

(cfpl) and (cfp2) files are illustrated schematically in figure (3-3).
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CFPGEN.FOR (compilation) — CFPGEN.OBJ (linking) — CFPGEN.EXE (after running)

Cipl <—And inputting N no. of boson

One body CFP

Typeof cfpl.dat

NPCFPG.FOR (compilation) — NPCFPG.OBJ (linking) — NPCFPG.EXE (after running)

And inputting maximum no. of boson

Cip2 / in file.dat with cfpl

Two body CFP
type of cfp.dat

Figure (3-3): structure of CFPGEN and NPCFPG programs

And to calculate the Racah coefficient, (RACFL) program will be used. (RACFL) program
can be compiled and linked to the Fortran power station, to produce the (RACFL.EXE) in which
we put the input data and application file of this program then we run. The input file is called
(Rac.dat) which contains the maximum number of d-boson (ng) and maximum number of
angular momentum with identifying name of output file. The output of Racah coefficient stored
in the file.dat is called (Rac6). This is illustrated schematically in the figure (3-4). On the other
hand, to calculate the d-boson of one-body operator matrix element, we use another program
called (DDMEFL) program when compiled and linked. We can input in the executed file the
maximum number of d-boson in the file with two-body CFP file (cfp2), and here we can take
the one-body matrix elements in a file.dat called (ddmef) that are used in the (NPBOSN)

program.
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RACFL.FOR (compilation) — RACFL.OBJ (linking) — RACFL.EXE (after running)

Rac6 Input data

Racah | < MAXND:n,

coefficient in

file.dat LTMAX: L
IFTLE: ract

DDMEFL.FOR (compilation) — DDMEFL.OBJ (linking) — DDMEFL.EXE (after running)

|

ddmefl.dat & Running file

One body matrix

element /I
Cfp2

F‘Wit]l maximum !
no. of d-boson

Figure (3-4): structure of RACFL and DDMEFL programs

With the above function, coefficients and parameters are taken by the programs can be used
in the (NPBOSN) program to calculate the properties of Zr-nuclei as energy levels with its
definite angular momentum. In the (NPBOSN) program, we have some input parameter for
nuclei which needs to identify the properties of the nuclei. These input parameters reading from
(NPBOSN) program are stored in the file.dat called (Zrnn.inp) where (nn) is the no. of atomic
mass of Zr-nuclei. We can produce the structure of the (NPBSON) program schematically as

illustrated in figure (3-5).
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NPBOSN.FOR (compilation) — NPBOSN.OBJ (linking) — NPBOSN EXE (after running) gciveus
executable file

Cfpl.dat

!

Cfp2.dat NPBOSN.EXE Zrnn.dat

Zron.inp & Inputfile contain

input parameter

Ddmefl.dat > Zrmmbout in table (3-1)

Zronnd.out

/

[ —

Rac6.dat

Zrnnb.out Zrnnd.out

Is file.dat, contain Is file.dat

the output about

energy levels with Diagonalaization of
definite angular Hamiltonian matrix

element and explain
the calculation with
parameters.

mom. And F.F values
for all states

Figure (3-5): structure of (NPBOSN) program

On the other hand, in the IBM-2 version to calculate the electromagnetic matrix elements
B(E2), B(M1), Q-moments and p-moments we use the (NPBTRN) program running in the
Fortran power station since information is stored in NPBTRN about these properties for Zr
nuclei. Here, we need a file.dat named as Zr-nn, where nn is the no. of atomic mass of Zr-
nucleus. It is contains some input parameter to calculation the above properties of the Zr-nuclei.
When we run the (NPBTRN) program, we can take the value of the B(E2) and Q-moment with
the value of M1 transition in the states in the same file.dat called Zr-nn.out. The NPBTRN can

be illustrated schematically in figure (3-6).
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NPBIRN.FOR (compilation) — NPBTRN.OBJ (linking) — NPBTRN.EXE (after
running give us executed file)

Cfpl.dat
NPBTRN.EXE Zr-nn.inp
Cfp2.dat -~ ¢
7 . Contains the
i input parameter
Ddmefl.dat Zr-nn.out explained  in
? table (3-2)

}

Is file.dat contain all
out puts like as B
(E2), Q-moments, M1
transitions

Zr-nn.out

Figure (3-6): structure of NPBTRN program

The ratio between E2 transitions to M1 transitions are called delta mixing ratio that can be
calculated from Delta IBM2.for after running from the Fortran power station studio.
Delta_IBM2.for contains all information about the delta mixing ratio as Hamiltonian parameters
CHI (y), effective charge boson and G-factor for both protons and neutrons. In this program, we
must run the program for each isotopes and change the parameter since each parameter has

selected parameters, and the input parameters in the input file are the electromagnetic
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parameters from the output of B(E2) and B(M1) transitions called DS(N), DD(N), DS(P), and

DD(P), with the gamma energy for each transition.

Delta IBM2.FOR (COMPILATION) — Delta_IBM2.0BJ (LINKING) ]

\
Delta IBM2.EXE (AFTER RUNNINUG GIVETS)

Zrand.inp
W
No. of transition _
Zrnnd.inp
DS{N) DD(N) DS(P) DD(P) electric —
IN) DD{N) DS{F) DD(P) Zrand.out

DS{N) DD{N) DS(P) DD(P) magnetic
: |
Zrnnd.out

Delta mixing ratio for each
transition we wanted

Figure (3-7): Structure of Delta_IBM2 program

85|Page



Chapter Four
Result and Discussion



Chapter Four Result and Discussion

Chapter four
Results and Discussion

Introduction

In the framework of the Interacting Boson Models (IBM-1 and IBM-2), the nuclear
structure of even-even Zr-isotopes are investigated. IBA-1 and IBA-2 Hamiltonian parameters
are obtained as well as the extraction of the energy levels. Also, the electric quadrupole
transition probabilities B(E2:J; — J;) of the Zr-isotopes were calculated. In calculations, the
theoretical energy levels and the electric quadrupole transition probabilities have been obtained
by using PHINT code. Good agreement was found from a comparison between the calculated
energy levels and the electric quadrupole transition probabilities B(E2) of the Zr-isotopes with

the experimental data.

Calculations with IBM framework depend on the best fitting of Hamiltonian parameters to
obtained the best result for the energy levels, B(E2) values, etc.. For the best choosing of the
parameters, we must depend on the experimental data. Important thing that we must know
before all things is the shape of nuclei and to locate it in Casten triangle. To know the shape of

the nuclei we used the energy value of experimental data for that purpose, where the ratio

+
between the energy of (%) tell us what the shape of that nuclei is. From the Casten triangle of

symmetry, three dynamical region produce SU(5),SU(3) and O(6), each of them is characterized
by a specified parameter in Hamiltonian Eq.(2-14). For instance SU(5) controlling with (g), in
SU(3) angular momentum and quadrupole moment interaction (a;L.L), and (a2Q.Q) are strong

existence the rotational nuclei, and O(6) controlling with (aoP.P). SU(5) is the shape image of
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vibrational nuclei, SU(3) is the shape image of rotational nuclei, and O(6) is of the y-unstable
nuclei.

Energy level calculations can be done by using the Hamiltonian Eq. (2-14), in the (IBM-1),
and in (IBM-2) it can be done by using the Hamiltonian Eq. (2-127) in the Fortran power station
program, such as IBM-1, each region of nuclei in IBM-2 specified by specific parameter in Eq.
(2-127). For example the first term (g4) is dominated in vibrational like nuclei and second term
(quadrupole-quadrupole interaction) is dominant in rotational nuclei with negative value of
Xz and x, , and with condition y, = — yx,, in second term may be obtained the y-unstable
nuclei.

This work contains the calculation of energy scheme of the bands (G-band, -band, and vy-
band), with the B(E2) and Q(27) which can be reproduced in IBM by the inserting the effective
charge (e3) for IBM-1 and (e, e,) for IBM-2. The IBM-1 calculation cannot take us the B(M1)
transition, while in IBM-2 can take the magnetic transition probability B(M1), and this is useful
to find the delta mixing ratio since it can be calculated from matrix element of B(E2) and B(M1)
transitions. The mixed symmetry is another property of IBM-2, and it’s very sensitive to the
Majorana terms in Hamiltonian of IBM-2. Where the state is fully symmetric the F-spin is
maximum value, while the mixed symmetry state has F-spin with minimum value. If we have
transition with strong B(M1), the transition occur from the mixed to full symmetric, and

consequently 6-mixing ratio is small for gamma transitions.
4.1 Energy spectrum

The energy ratios between E4F to E2] energy levels tell us about the nucleus shape
symmetry, it’s necessary to produce the low-lying energy levels of a nucleus by IBM-1. SU(5)

is vibrational nuclei with R4/, has a limit value of 2, 2.5 for y-unstable nuclei O(6), and 3.33 for
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+

rotational nuclei SU(3). The variation of the experimental % value of Zr-nuclei with the

1

neutron numbers is given in figure (4-1). It is clear that the ¥*%Zr-isotopes distrusted between

all limits, and we take the same result for those ratios in IBM-1 and IBM-2.

E4f
E2%
3.5 -
3 -
2.5 ——SU(5)
——0(6)
5 SuU(3)
—>— EXP.
1.5 -
1 T T T T T T T T T T T T T T T 1 Neutl’OnNO.
33 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

+
Fig. (4-1): Variation of the energy ratios i% with neutron number in 81%Zr-isotops.
1

However, by using the parameters of Tables (4-1a, and b) and (4-2a, and b) in the Hamiltonian
equations  (2-14) and (2-127) of IBM-1 and IBM-2 respectively, the result for a low-lying
positive parity energy spectra has been obtained for 8°-1987r, isotopes with neutron numbers
N= 40,42,44,46,48,52,54,56,58,60,62,64,66, and 68. These low-lying energy spectra which
obtained by IBM-1 and IBM-2 are within the SU(5), O(6), and SU(3) limits. We take the energy
spectra for 2'%zr-isotopes from the program for three bands, ground band with angular

momentum: 03,27,47,67,87, beta band with angular momentum: 03,2%, 4%, 63,83, and
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gamma band with angular momentum: 23,37,4%,57,6%, and can be compared with

experimental data as shown in the tables (4-3)

Table (4-1a): The IBM-1 Hamiltonian parameters used for %zr and %%

ik
N 10 9 | s 7 6|

e (Mev) Jl 0.71 || 073 ]| 0.75 | 0.72 | 0.75 || 0.70 [l 0.72

8, (Mev) Jl 0.06 || 0.05 Jl0o.058 | 0.0 | 00 | 00 J 0.0

| a; (Mev) ||0.0105 ||0.0106 || 0.0108 || 0.011 ||0 0087 || 0.01 I 0.0115
a; (Mev) ] -0.010 || -0.008 || -0.008 | -0.008 || 0.016 | 0.02 || 0.012

ag_ (Mev) || 00 J| 00 || 00 | 00 || 0.0 Jo.0089] 0.0 |
as (Mev) || 00 J| 00 || 00 | 00 || 0.0 Jo.0098] 0.0 J

[ cHI | -2.35 ] -1.35 ][ -2.35 ][ -1.35 ][ -1.35 ] -1.35 ][ -1.35
SO(6) 1.0 || 10 | 10 | 10 || 10 | 10

zr isotopes

=,

i

86-108

Table (4-1b): The IBM-1 Hamiltonian parameters used for zr isotopes

| Parameters | zr® [z | zv " [ zv " | zv " | zZr® | Zr” |

lTls 91011121312
|£ (Mev) || 0.64 ﬁ" 0.55 || 048 || 0.46 || 053 | 0.52

o
o
o1

o
o
[y
o
ol
o
o
[y
o
(6)]

W"W 0.04 |—16||W -0.008 ][ -0.0
[a (Mev) J 0.0 ] [ 0.0 | 0.0 ]
£E5 ) [N [ [

| SO(6) || 1.0 1.0 | 1.0

o
oo
O
o
o
oo

EE
I

H
w

[HEN
o
=
o

EEEEJ
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Table (4-2a): The IBM-2 Hamiltonian parameters used for **%zr and ***zr isotopes

Parameters || zr® || Zr% zr** | zr*® || zr® | zr* || zr%* ||
N, 5||4 3 2||1 1||2||
N, 5||5 5 5||5 5||5||
€4 0.51 || 0.645 | 0.20 | 0.575 || 0.93 | 0.90 || 0.91 ||
k rReap) | -0.14 || -0.24 | -0.18 || -0.15 || -0.008 ﬂ" —0.008|
Ky (RKNN) W"W -0.05 W"WW"WI
k. rerp) | -0.09 || 019 | -0.13 || -0.11 || -0.007 |[-0.007 || -0.007 ||
2 cHyy | -0.22 || -0.22 | -0.22 || -0.80 || -1.7 ﬂ| -1.7 |
X(CHP) TI’TTTI’TTI’TI
CLy (L=0) 00 [ 00 | -0.04-0.001] 00 0.0 | 0.0 ||
Cuwizp | -0.1 || -0.1 | -0.04 | -0.001 || 0.0 0.0 || 0.0 ||
CLy(L=9) -0.1 || 01 [[0275] 0.3 || 0.0 ﬂ| 0.1 |

CLr(L-024) W"W 0,0,0 W"WWW
£l 0.4 || 0.4 04 | 0.25 || -0.1 ﬂ| 0.1 |

g—zT"W -0.25 T"WWW
£3 0.4 || 0.4 04 | 025 || -0.02 || -0.02 || -0.02 |

Where all parameter in unit (MeV) except CHN and CHP
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Table (4-2b): The IBM-2 Hamiltonian parameters used for **%zr isotopes

Parameters || zr* || zr*® || zr'  zr2 |zt || zr'® || zr's
v 3 4 s s e
N J 5 JL 5 5 |5 5 5|65
£ || 0.98 || 0.95 || 0.3 | 0.001 | 0.017 || 0.001 || 0.001
K (RKAP) || 0.048 || -0.03 || -0.13 || -0.15 | -0.185 || -0.180 || -0.170

Ky (RKNN) || 0.020 || -0.01 || -0.06 || -0.07 | -0.060 || -0.055 || -0.05
Kz (RKPP) || 0.030 || -0.02 || -0.07 || -0.08 |{-0.125 || -0.125 || -0.120

Y (CHN) || -2.40 || -1.0 || -0.24 || -0.24 | -0.20 || -0.18 || -0.18

xachp) || 240 | 10 [ -024 | -024f 00 | 00 | 00
Cuy (L=0) || 0.90 || -1.0 || -0.15 || -0.10 || -0.04 || -0.04 || -0.04

Cuv=2 || 0.90 || 0.05 || -0.15 | -0.10 || -0.04 || -0.04 || -0.04

Where all parameter in unit (MeV) except CHN and CHP
4.1.1 %Zr-isotope

o

The values of the low-lying positive parity states of ®Zr-isotope calculated by IBM-1 and
IBM-2 models have been compared with the experimental data [86] as shown in the table (4-3).
It is clear from the table that the available data are limited to 27, 47, 67,87, and10F which are
located at 0.289, 0.826, 1.605, 2.610, and 3.789 MeV respectively; are nicely reproduced by

IBM-1 and IBM-2, but IBM-1 gives better fitting in comparison to IBM-2. The experimental

91| Page



Chapter Four Result and Discussion

data for beta and gamma band for ®°Zr-isotope are not available and the IBM-2 energy value for
these bands are pushed up and come higher than those of the IBM-1.

Table (4-3): the comparison between the calculated and the experimental energy levels
values of (¥zr)

Energy levels (Mev)

4.1.2 7Zr-isotope

The values of the low-lying positive parity states of 2°Zr-isotope calculated by IBM-1 and
IBM-2 models have been compared with the experimental data [87] as shown in the table (4-4).
It is clear from the table that the available data are limited to 27,47, 67,87, and107 which are
located at 0.407, 1.041, 1.888, 2.909 and 4.036 MeV respectively; are nicely reproduce by IBM-
1and IBM-2 , and in 127, 147 with experimental data 5.213, 6.490 MeV respectively [87],

the IBM-1 also produces best fitting, IBM-2 are pushing these states up. Again there are no
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experimental data for beta and gamma band for #*Zr-isotope are available. The predicted energy
values for these bands by IBM-1 and IBM-2 takes from the program, but the IBM-2 pushed up
the energy values of gamma and beta bands compared to the IBM-1, and the gamma band
coming lower than the beta band.

Table (4-4): the comparison between the calculated and the experimental energy levels
values of (¥zr)

Energy levels (Mev)

J+

EXP.  Ref.[87] IBM-1 IBM-2
o | o ] o ] o |
“ 0.407 0.470 0.433
“ 1.041 1.095 1.049
“ 1.888 1.873 1.843
“ 2.909 2.795 2.821
4.036 3.858 4.009

5.213 5.057 5.461

e ]
S I I R R
e e
I I R
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4.1.3%Zr-isotope

The values of the low-lying positive parity states of 3*Zr-isotope calculated by IBM-1 and IBM-
2 models have been compared with the experimental data [88] as shown in the table (4-5). It is
clear from the table that the available data are limited to 27,47, 67,87, and10F which are
located at 0.540, 1.263, 2.136, 3.089 and 4.069 MeV respectively; are nicely reproduce by IBM-

1and IBM-2 ,andin 127, 147 with experimental data 5.136, 6.303 MeV respectively [88],the
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IBM-1 and IBM-2 are pushed up. The gamma band head comes lower than the beta band, with
experimental data for 23,47, 63 are 1.119, 1.888, and 2.740MeV, are reproduced nicely energy
value by both IBM-1 and IBM-2, but there are no experimental energy values available for beta
band, and the values of energy for that band by IBM-1 and IBM-2 systematically are not bad.

Table (4-5): the comparison between the calculated and the experimental energy levels
values of (3zr)

. Energy levels (Mev)

Ref.[88] IBM-1 IBM-2
Lo |
- 0.540
- 1.263
- 2.136
- 3.089
- 4.069
- 5.136
- 6.303
- 1.119 1.117 1.037
- - 1790 ] . 180 |
:I
Co e e
N I TS B
S I R R RN

4.1.4 %°Zr-isotope

0.517
1.192
2.021
2.996
4113
5.368
6.758

0.429
1.116
2.015
3.002
4.196
5.692
7.525

e o9 ]
:I

The values of the low-lying positive parity states of %Zr-isotope calculated by IBM-1 and
IBM-2 models have been compared with the experimental data [89] as shown in the table (4-6).
It is clear from the table that the available data are limited to 2}, 43 which are located at 0.752,

and 1.666 MeV respectively; are nicely reproduced by IBM-1, but IBM-2 are pulling down with
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small amount compared by IBM-1. The 67 energy value with experimental [89] 2.669 MeV is
well fitted with both IBM-1 and IBM-2. The 87,and107 energy values with experimental
value 3.298 and 4.326 MeV are pushing up by both IBM-1 and IBM-2. The experimental data
for 23,473,67 are 1.422, 2.343, and 3.254 MeV in beta band are reproduced nicely by IBM-1,
and also best fitting by IBM-2 for23, and small pulling down for 4%and 65 by IBM-2. No
experimental data are available for gamma band, and the systematic of IBM-1 and IBM-2

results are reasonable.

Table (4-6): the comparison between the calculated and the experimental energy levels
values of (*zr)

Energy levels (Mev)
.
Lo ] oo J o0 ]
4,
5

[ | [ = R I
[ I TR TR
I I R

4.1.5%Zr-isotope

The values of the low-lying positive parity states of %Zr-isotope calculated by IBM-1 and
IBM-2 models have been compared with the experimental data [90] as shown in the table (4-7).

It is clear from the table that the available data are limited to 2}, 47 which are located at 1.057,
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and 2.139 MeV respectively; are nearly best fitting reproduce by IBM-1 and IBM-2 but pulling
down with small amount compared with experimental data. The 63 energy value with
experimental 2.811 MeV is in good fit with both IBM-1 and IBM-2. The 87 energy values with
experimental value 3.391 MeV is pushed up by both IBM-1 and IBM-2. The experimental data
for beta band are reproduced nicely by both IBM-1 and IBM-2, but for 63,82, and for gamma
band the IBM-1 is better fitting than IBM-2. °

Table (4-7): the comparison between the calculated and the experimental energy levels
values of (¥zr)

Energy levels (Mev)
EXP.  Ref.[90] IBM-1

J+
—
4,"
6,
8"
0,"
2,"

1.057
2.139
2.811
3.391
1.521
1.817 1.734 1.793
4," 2.605 2.616 2.698

N R I A TR
e e e

0.911
1.836
2.786
3.768
1.682

0.890
1.796
2.722
3.669
1.788

4.1.6 %Zr-isotope

The values of the low-lying positive parity states of “?Zr-isotope calculated by IBM-1 and
IBM-2 models have been compared with the experimental data [91] as shown in the table (4-8).

Tthe available data are limited to 27, 47, 67, and 87; both IBM-1 and IBM-2 almost fitting 27
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and 67 nicely, but pushing up for 47 and 87 . In the beta band the experimental data for
0%,2%,4% 63 are 1.383, 1.847, 2.398, and 3.304 MeV, both IBM-1 and IBM-2 pushed up the
0%, 43,67 states, while fitted nicely the 23 state. The experimental energy value for gamma
band with 23,43, and 57 states are 2.182, 2.864, and 3.675 MeV, the IBM-1 is better in fitting
than IBM-2 for 2} and 57 states but for 4% state vice versa. Our results are better than those of

ref [40, 50] in both IBM-1 and IBM-2.

Table (4-8): the comparison between the calculated and the experimental energy levels
values of (*zr)

Energy levels (Mev)
-* __—

R O — . — ——

4.1.7 *Zr-isotope

The values of the low-lying positive parity states of **Zr-isotope calculated by IBM-1 and
IBM-2 models have been compared with the experimental data [92] as shown in the table (4-9).

The available data are limited to 27,47, 67, and 87; both IBM-1 and IBM-2 achieved good
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fitting for 2Fand 87 , while both are slightly pushing up 47 t and pulling down 67. In the beta
band experimental data for 03,23, and 4% are 1.301, 1.672, and 2.330 MeV, both IBM-1 and
IBM-2 pushed up 0%and 43 by small amount, but both fitted 2 nicely. The experimental energy
value for gamma band for states 23,37, and 4% are 2.152, 2.508, and 2.861 MeV, both IBM-1
and IBM-2 nearly best fit for 23and 37 states, but both together are pushed up for 37 . Our

result compared to the ref [42,43,50] is very good in both IBM-1and IBM-2.

Table (4-9): the comparison between the calculated and the experimental energy levels
values of (*zr)

Energy levels (Mev)

:
e T oo oo | o |
e T e e
IESE I T TR
[ I ¥R I
7 I T R A

4.1.8 **Zr-isotope

The results of *®Zr-isotope calculated by IBM-1 and IBM-2 models have been compared with
the experimental data [93] as shown in the table (4-10). The available data are limited to

27,4F,6F,and 8F; both IBM-1 and IBM-2 pulling down the 27and 4{, and nearly producing
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best fit for 67 and 87. In the beta band both IBM-1 and IBM-2 pushing up 03, but showing
good fit for 23,4%,and 63. The experimental energy value for gamma band for
states 23, 4%,5F,63,and 7] are 2.668, 3.082, 3.309, 4.430, and 5.066 MeV, both IBM-1 and
IBM-2 are fitting well the 23state, but both pushed 4% and 57 states higher, while the
63,and 77 states are slightly pushed up by IBM-1, and slightly pulled down by IBM-2. Our
result compared to the ref [42,43] are good fitted in both IBM-1and IBM-2.

Table (4-10): the comparison between the calculated and the experimental energy levels
values of (*°zr)

8,"
0"
_

1.277
2.407
3.443
4.475

- 4.390 4.622
_ 1.581 1.828 1.998
— 2.226 2.179 2.349
2.857 3.091 2.881
3.772 4.052 3.578
2.668 2.464 2.609
3.082 3.590 3.378
3.309 3.892 3.501
4.430 4.594 3.858
5.066 5.269 4.262

4.1.9 ®Zr-isotope

The values of the low-lying positive parity states of ®*Zr-isotope calculated by IBM-1 and

IBM-2 models have been compared with the experimental data [94] as shown in the table (4-

11). These available data are limited to 27,47,67,and 8F. Both IBM-1 and IBM-2 nicely
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fitted ground state band and the beta band states. The experimental energy values of gamma
band for states 23 and 4% are 1.744, 3.271 MeV, both IBM-1 and IBM-2 fitted nicely the
2%state, but both are pulling down 4% state by small amount, schematically not bad result for
other states. Our results in compare to the ref [42,43] are reasonable in both IBM-1and IBM-2.

Table (4-11): the comparison between the calculated and the experimental energy levels
values of (**zr)

Energy levels (Mev)
EXP.  Ref.[94] IBM-1

J+
e
0, 0.854 1.195 1.136

o e e
e e
I | I A TR
e e

4.1.10 *Zr-isotope

The values of the low-lying positive parity states of *°Zr-isotope calculated by IBM-1 and
IBM-2 models have been compared with the experimental data [95] as shown in the table (4-
12). It is clear from the table that the available data are limited to 2}, 4], 67, and 8 which are
located at 0.213, 0.565, 1.062, and 1.687 MeV respectively; both IBM-1 and IBM-2 are fitting

well these states in G.S. band. In the beta band experimental data for 03,23,4%, and 63 are
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0.829, 0.879, 1.294, and 1.856 MeV, both IBM-1 and IBM-2 reproduced acceptably good fit for
07,23 and 47states, but the 63 is pushed up by IBM-1 and pulled down by IBM-2 by small
amount. The experimental energy values for gamma band for states 2%,37 and 77 are 1.196,
1.295, and 2.480 MeV, IBM-1 and IBM-2 predict best fit for these states. Our result compared
to the ref [42,43,52] and look good in both IBM-1and IBM-2.

Table (4-12): the comparison between the calculated and the experimental energy levels
values of (*°zr)

0"
2,
4,

§

0.242
0.620
1.124
1.737
0.716
0.720
0.932

2055 Taos
e e
e e

4.1.11 ***Zr-isotope

The values of the low-lying positive parity states of ‘%?Zr-isotope calculated by IBM-1 and
IBM-2 models have been compared with the experimental data [96] as shown in the table (4-
13). The available data are limited to 27,47, 67,and 87; both IBM-1 and IBM-2 nearly
produced best fit for these states in ground state band and in the beta band for

07,23,43,and 67 states. The experimental energy value for gamma band for
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states 23,37,43,63 and 77 are 1.211, 1.242, 1.538, 1.829 and 2.925 MeV, both IBM-1 and
IBM-2 fitted 2%,3] and 4% states nicely, but 6% in both IBM-1 and IBM-2 is pushed up by
small amount, while both pulled down the 77 state. Our result in compare to the ref [42,51] is

good in both IBM-1and IBM-2.

Table (4-13): the comparison between the calculated and the experimental energy levels
values of (1%%zr)

e oo w1
T e e

4.1.12 *Zr-isotope

The values of the low-lying positive parity states of 1**Zr-isotope calculated by IBM-1 and
IBM-2 models have been compared with the experimental data [97] as shown in the table (4-
14). It is clear from the table that the available data are limited to

21,441,671, 87, 10, 127,and 147 states are 0.139, 0.452, 0.926, 1.550, 2.315, 3.210, and
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4.224 MeV, are well reproduced by both IBM-1 and IBM-2. The G-band, beta band and gamma
band are well reproduced by both IBM-1 and IBM-2 in compare with ref [41], and best

reproduce the G-band if compared to ref [42].

Table (4-14): the comparison between the calculated and the experimental energy levels
values of (*%zr)

EI
S R I
[ I R I
S R I TR R TR
o e e
e e
I R I R
o e e
[ R I R TR
[ A R
e e

4.1.13 *Zr-isotope

The values of the low-lying positive parity states of ‘%Zr-isotope calculated by IBM-1 and
IBM-2 models have been compared with the experimental data [98,99,100] as shown in the

table (4-15). It is clear from the table that the available data are limited to 27, 47,67, and 87
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states are 0.152, 0.477, 0.946, and 1.572 MeV, its best reproduced by both IBM-1 and IBM-2.
The experimental data of 23 state is 0.607 MeV. The G-band, beta band and gamma band are
well reproduced by both IBM-1 and IBM-2 if compared with ref [41], and best reproduce the G-
band if compared to ref [44].

Table (4-15): the comparison between the calculated and the experimental energy levels
values of (1%zr)

Energy levels (Mev)
EXP.  Ref.[98,99,100] IBM-1 IBM-2

Lo 1 o0 |

0
2
8
2

0.114

0.455

0.950
1.612
2433

4
1
oo e e
B I
I S S R
S I R TR
R R IR R
RS 7 A R TR
[ N S TR TR
e e
S I TR RN

|

- 1572 1.609

2.390

J+
T
1
T
1
T
1
T
1
T
1
T
Lo ]
+
2
T
4y
T
2

4.1.14 *®Zr-isotope

The values of the low-lying positive parity states of ‘°Zr-isotope calculated by IBM-1 and
IBM-2 models have been compared with the experimental data [98,99,101] as shown in the

table (4-16). The available data are limited to 2}, 47,65, and 87 states they have been nicely
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reproduced by IBM-1 and IBM-2. The experimental data of 27,37,47, and 67 states are 0.604,
0.947, 0.947, and 1.725 MeV, in gamma band are well reproduced in both IBM-1 and IBM-2.
Also the experimental data of 23 in beta band with 0.948 MeV is good fitted by both IBM-1

and IBM-2. All bands are finely produced by both IBM-1 and IBM-2 in compare with ref [41].

Table (4-16): the comparison between the calculated and the experimental energy levels
values of (1%zr)

Energy levels (Mev)

I EXP.  Ref.[98,99,101] IBM-2

d
0
‘
Lo I J 2e0 f 2% |
=  sae ] see ]
IECNE I AN NN
2

T e e
A I R R
o ew e
e s
e e
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Figure (4-2): a comparison between the experimental low —lying positive parity states in
871 [86]. With those obtained by IBM-1 and IBM-2 for ground, gamma, and beta bands.
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Figure (4-3): a comparison between the experimental low —lying positive parity states in ®Zr [87]
with those obtained by IBM-1 and IBM-2 for the ground, gamma, and beta bands.
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Figure (4-4): a comparison between the experimental low —lying positive parity states in
87r [88] with those obtained by IBM-1 and IBM-2 for ground, gamma, and beta bands.
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Figure (4-5): a comparison between the experimental low —lying positive parity states in
82r [89] with those obtained by IBM-1 and IBM-2 for ground, gamma, and beta bands.
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Figure (4-6): a comparison between the experimental low —lying positive parity states in
82r [90] with those obtained by IBM-1 and IBM-2 for ground, gamma, and beta bands
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Figure (4-7): a comparison between the experimental low —lying positive parity states in
%271 [91] with those obtained by IBM-1 and IBM-2 for ground, gamma, and beta bands.
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Figure (4-8): a comparison between the experimental low —lying positive parity states in
%zr [92] with those obtained by IBM-1 and IBM-2 for ground, gamma, and beta bands.
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Figure (4-9): a comparison between the experimental low —lying positive parity states in
%21 [93] with those obtained by IBM-1 and IBM-2 for ground, gamma, and beta bands.
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Figure (4-10): a comparison between the experimental low —lying positive parity states in
%21 [94] with those obtained by IBM-1 and IBM-2 for ground, gamma, and beta bands.
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Figure (4-11): a comparison between the experimental low —lying positive parity states in
1007r [95] with those obtained by IBM-1 and IBM-2 for ground, gamma, and beta bands.
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Figure (4-12): a comparison between the experimental low —lying positive parity states in
1927y [96] with those obtained by IBM-1 and IBM-2 for ground, gamma, and beta bands
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Figure (4-13): a comparison between the experimental low —lying positive parity states in
1047r [97] with those obtained by IBM-1 and IBM-2 for ground, gamma, and beta bands
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Figure (4-14): a comparison between the experimental low —lying positive parity states in
10671 [98,99,100] with those obtained by IBM-1 and IBM-2 for ground , gamma, and beta

bands
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Figure (4-15): a comparison between the experimental low —lying positive parity states in
1081 198, 99, 101] with those obtained by IBM-1 and IBM-2 for ground, gamma, and beta

bands
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E2}

+
E)' and (5%) of the selected Zr-isotopes, has been calculated in
1 1

. E4T
The energy ratios (1), (
1

the frame work of IBM-1, together with their corresponding experimental values are plotted
respectively against the neutron numbers of Zr-isotopes and displayed in figures (4-16), (4-17),
and (4-18). And the figures show that the Zr-isotopes evidence are considering as vibrational,
rotational, and gamma soft symmetries. Generally the IBM-1 calculations of the values of above

ratios are agree with the experimental energy ratios values.
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Figure (4-16): experimental and calculated values of the energy ratios % as a function of
1

80-108

neutron number for zr isotopes.
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Figure (4-17): Experimental and calculated values of the energy ratios izii as a function of
1

80-108

neutron number for zr isotopes.
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Figure (4-18): Experimental and calculated values of the energy ratios izii as a function of
1
neutron number for 8%zr isotopes.
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In figure (4-19) the calculated IBM-1 and IBM-2 energy values of the ground band have been

plotted as a function of the neutron numbers of #%Zzr-isotope. In figures (4-19a), (4-19b), and

(4-19c) the energies for some selected states of the ground band, such as 27, 47, and 67

respectively are well fitted in both IBM-1 and IBM-2.
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Figure (4-19): A comparison between the calculated energy values of the IBM-1 and IBM-
2 and those of experimental data in the **%Zr-isotopes for the ground band of (a) 27 state
(b) 47 state (c) 67 state.

In figure (4-20) the calculated IBM-1 and IBM-2 energy values of the beta band have been
plotted as a function of the neutron numbers of #'%Zzr-isotope. In figures (4-20a), (4-20b), and
(4-20c) the energies for some selected states of beta band, such as 03, 23, and 47 respectively

are well fitted in both IBM-1 and IBM-2, and with increasing the neutron number both IBM-1

and IBM-2 are more acceptable result can be reproduced.
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Figure (4-20): A comparison between the calculated energy values of the IBM-1 and IBM-
2 and those of experimental data in the **'%Zr-isotopes for the beta band of (a) 03 state
(b) 23 state (c) 47 state.

In the figure (4-21) the calculated IBM-1 and IBM-2 energy values of the gamma band have

been plotted as a function of the neutron numbers of 8% Zr-isotope. In figures (4-21a), (4-21b),

(4-21c), and (4-21d) the energies for some selected states of the gamma band, such as 2%, 37,

4% and 57 respectively are well best fitting in both IBM-1 and IBM-2, and with increasing the
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neutron number both IBM-1 and IBM-2 are more acceptable result can be reproduced, in other

hand we can say that the IBM-1 can reproduced the best result in some states and with

increasing the neutron numbers compared to the IBM-2.
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Figure (4-21): A comparison between the calculated energy values of the IBM-1 and IBM-
2 and those of experimental data in the *'%Zr-isotopes for the gamma band of (a) 23 state
(b) 37 state (c) 43 state (d) 57.

From the resulting parameters that have been used in the calculation of IBM-2 which have
been listed in table (4-2), one may conclude that the main features on nuclei are determined by
the parameters (g4, K, x,, and y, ). The parameters which have a great effect are plotted against
the neutron numbers in 82%Zr-isotopes and presented in figures (4-22) and (4-23). Figure (4-
22) shows (&) as a function of the neutron numbers, and it is increasing and decreasing between
87r and ¥zr, and from ®zr starts to increasing and then nearly be constant until ®*Zr, then after
increasing the neutron numbers from **Zr to '°Zr the (¢,) is decreasing and approaching zero.

It is clear that K in the figure (4-23) has same behavior.
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1 .
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Figure (4-22): Variation of the parameter g4 with the neutron numbers in 8%

for IBM-2.

zr isotopes
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Figure (4-23): Variation of the parameter K with the neutron numbers in %1%

for IBM-2.

zr isotopes

4.2 Mixed symmetry states

In the IBM-2 model, distinctions between neutron (v) and proton (1) bosons are produced,
and can be reproduce all the result of IBM-1, but in addition contains extra states of what so
called mixed symmetry states. These states are not totally symmetric in (sd) space and are

allowed in IBM-2 because of the extra (v m) degree of freedom. A sensitive indication of mixed

symmetry states description is due to the percentage of the F-spin contribution. Where Fzé for

bosons with Fpax = N”;N" = % Since states with maximum F-spin are symmetric. It should be

remarked that states with Fpa= g lie lowest in energy followed by F= g— 1, g -2, ... etc.,

where the separation between states of mixed symmetry are determined by the Majorana terms.
Table (4-17) shows the percentages of F-SPIN contribution in Zr- isotopes, some states in both
three bands are fully symmetric for all Zr-isotopes such as 27state, but in other hand 1fis a
mixed symmetry state without e for all isotopes Zr®, is not symmetric. The 2}state also is
symmetric for all isotopes without #zr, 1%Zr, and *°*Zr are mixed symmetry in 23 state. In the
27 state vice versa all isotopes are mixed symmetry without ®zr and *°zr are full symmetry,

and '®Zr also near mixed symmetry. In the 37 state **zr, %zr, *°zr, **zr, and **®Zr are mixed

120 | Page



Chapter Four Result and Discussion

symmetry, and *°Zr is not symmetric, all other isotopes are full symmetric. In 03 state *Zr is
full symmetric, **Zr and %°Zr near symmetric, and *%°zr is not symmetric, but all other isotopes

are mixed symmetry.

Table (4-17): the percentages of F-spin contribution in Zr-isotopes for states that have the
mixed symmetry characters.

isotopes I >

F-spin %100

+

%97.7 %068.1 %64.7

%94.1 %77.1 %70

%92.2 %81.3

%078.3

Figures (4-24 and 4-25) are taken as an example to study the influence of the Majorana

%080.1 %069.3 %064.2 %063.4

I Il W
I N I N I I I
24
=
2
25
zr

parameters &; & and & on the mixed symmetry states or those contained mixed symmetry

components, and some isotopes are taken for studying the affected the Majorana terms

parameter. Figure (4-24a,b) shows that the 1/, = 1* in '%Zr and '®Zr levels is strongly affected

by &, show that 1; state is mixed symmetry for both isotopes, and figure(4-24c,d) shows that
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37 1%zr and ®Zr levels depends on the&,,. The influence of &£, parameter is shown in figure

(4-25a,b), where it strongly effects the energies of all the levels considered to have a mixed
symmetry components in %Zr and *®Zr respectively and specially the 2* states. One of the

important features is where two or more of states share the characters of mixed-symmetry, and

that the case of 2;and2;. With chosen values of &,, State 2 is effected by &, and carries
totally or partially the properties of MS, and as the values of &, is increased such properties
starts to be transferred to 2. These characters in 2 states are less significant than that in 2;

states, which can be seen in Figures (4-25a, and 4-25b) for the'®zr and %®zr  respectively.
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7104 3 .
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/ﬁ 2.5 -
23 2 1
oF 15 -+
37 ?
23 1 -
0.5 -
+
1 (MeV) 21 ~
-0.25 -0.2 -0.15 -0.1 -0.05 0

104

Figure (4-24 a): The change of the level energy in ~"Zr as a function of &;.
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Figure (4-24 b): The change of the level energy in *®Zr as a function of &;.
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Figure (4-24 c): The change of the level energy in '“Zr as a function of &;.
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Figure (4-24 d): The change of the level energy in *®Zr as a function of &;.
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Figure (4-25 a): The change of the level energy in ~“Zr as a function of &,.
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Figure (4-25 b): The change of the level energy in *®Zr as a function of &.

4.3 Electromagnetic properties:

4.3.1 BE(2) transition properties
The boson E2 operator in IBM-1, equation (2-26) and in IBM-2, equation (2-134), have been

used for calculating the E2 transition rates and the quadrupole moments, for the low- lying
excited states of the considered Zr-isotopes. In the principle that the value of the effective

charge («,) of the IBM-1 was determined by normalizing to the experimental data
B(E2;2; — 0,) of each isotopes (by using equation (2-65)). While in IBM-2 the values of e,

and e_in the present work are important and changed for each isotopes.
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In Tables (4-18) to (4-31) the calculated results of the IBM-1 and IBM-2 and the experimental

data for B(E2; j, — j, ) transitions in units of (e°b?) are compared. The data of B(E2;2; — 0;)

, B(E2;4] — 2/)and B(E2;2, — 2;) transitions are plotted as a functions of neutron number
of 81%zr jsotopes in figures (4-26) to (4-29). As the neutron number is increasing the
experimental B(E2;2, — 0;) changes increase and decrease, figure (4-26) which are in very
good agreement with IBM-1 and IBM-2 for all isotopes, while in figure (4-27) sometime the
IBM-2 results agree with experimental data for the transitions B(E2;4; —2;) e’b® for
example when N=44,52,60 and sometime IBM-1 agrees with the experimental data for example
when N=46,52, and some time both IBM-land IBM-2 are nearest fit like N=92, and in
somewhere both together are far away from experimental data like N=46,54. Figure (4-27)
shows that both IBM-1 and IBM-2 results are acceptable or expectant since don’t have
experimental data for these transitions. The other transitions haven’t experimental data, except
N=52 have the value of transition B(E2; 67 — 47), B(E2; 27 — 03) both IBM-1and IBM-2
give us acceptable results, and N=54, have the value of transition B(E2; 2§ — 03) also IBM-1
and IBM-2 give us the best nearest results.

B(E2;4! —2))
B(E2;2; —0)

The ratio of was calculated and compared with those of experimental data

and displayed. In the figure (4-28) show that N= 44 IBM-2 nearest fit than IBM-1, but N=46

both IBM-1 and IBM-2 are far away, also N=48,52 both IBM-1 and IBM-2 are fitted, but when
N=60 IBM-2 are the best fit than the IBM-2. The quadrupole moments of the first excited 2,

states in 21%Zr-isotopes are also studied in this work and presented in Tables (4-18) to (4-31)

have been calculated by using (IBM-1 and IBM-2) models.
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Table (4-18): The experimental B ( E2; J; — J;) values , in the units (e°b?) ,and the
quadruple moments ,in the unit of (e.b) ,for ®°zr isotope are compared with those obtained
by IBM-1 and IBM-2 results . the effective charges are taken as ( a2 = 0.17624 e.b ) in the
IBM-1 and (e, =0.175, e, =0.174 ) e.b in the IBM-2

Ji—J; Ref. [102 103 104,105 106] IBM 1 IBM-2
B — — T — ——
YT R IR B R
I I I B
B S — — —

Table (4-19): The experimental B ( E2; J; — J;) values , in the units (e’b?) ,and the
quadruple moments ,in the unit of (e.b) ,for ®zr isotope are compared with those obtained
by IBM-1 and IBM-2 results . the effective charges are taken as ( a,=0.23794 e.b ) in the
IBM-1 and (e,=0.1833, e, =0.17) e.b in the IBM-2

- B(E2, Ji — J;) EXP. B(E2, J > Jp)
I Ref.[102,103,104,105,106] IBM-l IBM-2

B E— " — —_
G I I
I I I
I I R
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Table (4-20): The experimental B ( E2; J; — J;) values , in the units (e°b? ,and the
quadruple moments ,in the unit of (e.b) ,for ®zr isotope are compared with those obtained
by IBM-1 and IBM-2 results . the effective charges are taken as ( a2 = 0.18127 e.b ) in the
IBM-1 and (e,=0.17, e, =0.156) e.b in the IBM-2

B (E2; J; — J;) EXP. B(E2;Ji — J;) B (E2; Ji — Ji)
J—J; Ref.[88,102,103,104,105,106] IBM-1 IBM-2
0.437 0.437 0.437
0.5157 0.7302 0.5989

Table (4-21): The experimental B ( E2; J; — J;) values , in the units (e?b?) ,and the
quadruple moments ,in the unit of (e.b) ,for ®zr isotope are compared with those obtained
by IBM-1 and IBM-2 results . the effective charges are taken as ( 0,=0.139292 e.b ) in the
IBM-1 and (e,=0.1304, e, =0.11) e.b in the IBM-2

B (E2; J; — J;) EXP. B(E2;Ji — J;) B (E2; Ji — Ji)
J—J; Ref.[89,102,103,104,105,106] IBM-1 IBM-2
0.157 0.157 0.157
0.082 0.2775 0.2306
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Table (4-22): The experimental B ( E2; J; — J;) values , in the units (e’b?) ,and the
quadruple moments ,in the unit of (e.b) ,for %zr isotope are compared with those obtained
by IBM-1 and IBM-2 results . the effective charges are taken as ( a2 =0.13199 e.b ) in the
IBM-1 and (e, =0.04, e, =0.131) e.b in the IBM-2

B(E2J—>Jf)EXP B(Eza_>1f) B(EZJ—>Jf)
J—»Jf Ref. [90 102,103,104,105,106] IBM 1 IBM 2
0086 0086 0086

m o 1256 o 1387 0 1405

22 —»21 0 1666 O 0005

Table (4-23): The experimental B ( E2; J; — J;) values , in the units (e’b?) ,and the
quadruple moments ,in the unit of (e.b) ,for %’zr isotope are compared with those obtained
by IBM-1 and IBM-2 results . the effective charges are taken as ( a2 =0.12943 e.b ) in the
IBM-1 and (e,=0.04, e, =0.125) e.b in the IBM-2

Ji —>Jf Ref. [42 50, 102 103,104,105 106] IBM-1 IBM-2

m o 0340 0 0270 o 0236

22 —>21 O 1557 0 1158
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Table (4-24): The experimental B ( E2; J; — J;) values , in the units (e’b?) ,and the quadruple
moments ,in the unit of (e.b) ,for *zr isotope are compared with those obtained by IBM-1 and
IBM-2 results . the effective charges are taken as ( a,=0.10369 e.b ) in the IBM-1 and (e, =0.044,
e, =0.11) e.b in the IBM-2

Ji—J; Ref.[42,50,102,103,104,105,106] IBM-1 IBM-2
N I R ST
P S NS FICR TR—
N I R S
N I R S

| 0.0050 0.0010 0.0010

| 0.024 0.017 0.0211

Table (4-25): The experimental B ( E2; J; — J;) values , in the units (e?b?) ,and the quadruple
moments ,in the unit of (e.b) ,for *zr isotope are compared with those obtained by IBM-1 and
IBM-2 results . the effective charges are taken as ( 0, = 0.07 e.b ) in the IBM-1 and (e,=0.0468, e,
=0.09) e.b in the IBM-2

Ji—J; Ref.[102,103,104,105,106] IBM-1 IBM-2
T I I R R
T I I T R
ST I T A R
T I I R R

L2 | ] 0.0147
>0.000157 0.00012 0.0001

0.021195 0.0450 0.0380
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Table (4-26): The experimental B ( E2; J; — J;) values , in the units (e°b?) ,and the
quadruple moments ,in the unit of (e.b) ,for *zr isotope are compared with those obtained
by IBM-1 and IBM-2 results . the effective charges are taken as ( a2 = 0.15907 e.b ) in the
IBM-1 and (e,=0.0526, e, =0.16) e.b in the IBM-2

B(E2J—>Jf)EXP B(Eza_>1f) B(E2J—>Jf)
J; _>Jf Ref. [102 103,104,105,106] IBM 1 IBM 2
o 158 ¥0.11 o 158 o 158

61 —d," 0 3229 0 3325

i E— —
I I I WL
I I L R

Table (4-27): The experimental B ( E2; J; — J;) values , in the units (e’b?) ,and the
quadruple moments ,in the unit of (e.b) for ®zr isotope are compared with those
obtained by IBM-1 and IBM-2 results . the effective charges are taken as ( o, = 0.19766
e.b) in the IBM-1 and (e,=0.2312, e, =0.19) e.b in the IBM-2

J,—»Jf Ref. [95 102 103 104,105 106] IBM-1 IBM-2

B E— ——— ——
I I N R
T I I R
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Table (4-28): The experimental B ( E2; J; — J;) values , in the units (e’b?) ,and the
quadruple moments ,in the unit of (e.b) ,for %zr isotope are compared with those
obtained by IBM-1 and IBM-2 results . the effective charges are taken as ( a, = 0.17594
e.b) inthe IBM-1 and (e,=0.2387, e, =0.178) e.b in the IBM-2

B (E2; J; — J;) EXP. B(E2;J — J;) B (E2; Ji — Ji)
J—J; Ref.[102,103,104,105,106] IBM-1 IBM-2
1.350 1.350 1.350

Table (4-29): The experimental B ( E2; J; — J;) values , in the units (e’b?) ,and the
quadruple moments ,in the unit of (e.b) ,for ®zr isotope are compared with those
obtained by IBM-1 and IBM-2 results . the effective charges are taken as ( a; = 0.20041
e.b)inthe IBM-1 and (e,=0.26175, e, =0.21) e.b in the IBM-2

B(E2 Ji — J;) EXP. B(E2; Ji — J;) B(E2: J — J;)
J _>Jf Ref. [102 103,104,105,106] IBM-1 IBM-2
m 1 958 1.958 1.958

I — —
I I R
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Table (4-30): The experimental B ( E2; J; — J;) values , in the units (e°b? ,and the
quadruple moments ,in the unit of (e.b) ,for °zr isotope are compared with those
obtained by IBM-1 and IBM-2 results . the effective charges are taken as ( a, = 0.17124
e.b) in the IBM-1 and (e,=0.21, e, =0.1877) e.b in the IBM-2

Ji—J; Ref.[102,103,104,105,106] IBM-1 IBM-2

Table (4-31): The experimental B ( E2; J; — J;) values , in the units (e?b?) ,and the
quadruple moments ,in the unit of (e.b) ,for °zr isotope are compared with those
obtained by IBM-1 and IBM-2 results . the effective charges are taken as ( a, = 0.17124
e.b) in the IBM-1 and (e,=0.21, e, =0.1877) e.b in the IBM-2

B (E2; J; — J;) EXP. B(E2: J — J;) B(E2: J — J;)
Ji—J; IBM-1 IBM-2

61 —4," 2 1458 1. 9403

B E— ————
I I R R
I R S
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Figure (4-26): the B(E2;2," — 0,") e’b? transition for ®'%zr — isotopes as a function of
neutron number.
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Figure (4-27): the B(E2;4," — 2,%) e’b? transition for '%zr — isotopes as a function of
neutron number.
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Figure (4-28): the B(E2;2," — 2,%) e%b? transition for '%zr — isotopes as a function of
neutron number.
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Figure (4-29): the ratios of B(E2;4," — 2,") / B(E2;2," — 0,") for '%zr —isotopes as a
function of neutron number.
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4.3.2 B (M1) transition properties

The boson M1 operator of the IBM-2, have been used for calculating the M1 transitions
rates and the magnetic dipole moments, for the first excited states 2; (,. ). However, these
properties are influenced by the parameters of g, and g, . A fixed values for g,6=-0.02,
changed value forg, shows above the tables, have been used to produce these properties

throughout all ****Zr-isotopes. The comparison between the calculated result for (g, )

moments of the IBM-2 model and those of experimental data are presented in Tables (4-32) to
(4-45), and there are no experimental data available for B(M1) transitions.

Table (4-32): The B(M1; J; —Jy) values , in the units of (u%), and the magnetic dipole
moments for the 27 states (“2; ) in the unit of (uy), for ¥zr-isotopes obtained by I1BM-2

results . The effective g- charges are taken as g, =-0.02 and g, = 2.839

B(M1; Ji —Ji)
VR =" ——
|“:| 04072 |

:I 00301

T S R
EEETR S R
e | o
S I S
:I
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Chapter Four Result and Discussion

Table (4-33): The B(M1; J; —Jy) values , in the units of (u%), and the magnetic dipole
moments for the 27 states (ﬂz;) in the unit of (uy), for ®zr-isotopes obtained by 1BM-2

results . The effective g- charges are taken as g,= -0.02 and g,=2.839

. BMLJ->JH) ]
Ji i IBM-2

I I S 5T
ZESHEN I Y
BT E— -
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Table (4-34): The B(M1; J; —Jy) values , in the units of (u%), and the magnetic dipole
moments for the 27 states ( ”21*) in the unit of (uy), for ®zr-isotopes obtained by IBM-2

results . The effective g- charges are taken as g,= -0.02 and g, = 2.839
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Chapter Four Result and Discussion

Table (4-35): The B(M1; J; —Jy) values , in the units of (u%), and the magnetic dipole
moments for the 27 states (“2; ) in the unit of (uy), for ®zr-isotopes obtained by I1BM-2

results . The effective g- charges are taken as g,= -0.02 and g, = 2.995
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Table (4-36): The B(M1; J; —Jy) values , in the units of (u%), and the magnetic dipole
moments for the 27 states (ﬂz;) in the unit of (uy), for ®zr-isotopes obtained by I1BM-2

results . The effective g- charges are taken as g,= -0.02 and g,=0.725
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Table (4-37): The B(M1; J; —Jy) values , in the units of (u%), and the magnetic dipole
moments for the 27 states (4, ) in the unit of (uy), for %zr-isotopes obtained by IBM-2

results . The effective g- charges are taken as g,=-0.02 and g, = 0.725
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Table (4-38): The B(M1; J; —Jy) values , in the units of (u%), and the magnetic dipole
moments for the 27 states (“2; ) in the unit of (uy), for **zr-isotopes obtained by I1BM-2

results . The effective g- charges are taken as g,= -0.02 and g, = 0.725
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Table (4-39): The B(M1; J; —Jy) values , in the units of (u%), and the magnetic dipole
moments for the 27 states (“2; ) in the unit of (uy), for *zr-isotopes obtained by I1BM-2

results . The effective g- charges are taken as g,= -0.02 and g, = 0.109
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Table (4-40): The B(M1; J; —Jy) values , in the units of (u%), and the magnetic dipole
moments for the 27 states (,uzf) in the unit of (uy), for ®zr-isotopes obtained by 1BM-2

results . The effective g- charges are taken as g,= -0.02 and g, = 0.109
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Table (4-41): The B(M1; J; —Jy) values , in the units of (u%), and the magnetic dipole
moments for the 27 states (s, ) in the unit of (uy), for **zr-isotopes obtained by 1BM-2

results . The effective g- charges are taken as g,= -0.02 and g,=1.77
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Table (4-42): The B(M1; J; —Jy) values , in the units of (u%), and the magnetic dipole
moments for the 27 states (4, ) in the unit of (uy), for 1927r-isotopes obtained by I1BM-2

results . The effective g- charges are taken as g,= -0.02 and g, =1.39
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Chapter Four Result and Discussion

Table (4-43): The B(M1; J; —Jy) values , in the units of (u%), and the magnetic dipole
moments for the 27 states (s, ) in the unit of (u), for **'zr-isotopes obtained by 1BM-2

results . The effective g- charges are taken as g,= -0.02 and g, =1.39
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Table (4-44): The B(M1; J; —Jy) values , in the units of (u%), and the magnetic dipole
moments for the 2] states (4, ) in the unit of (), for 1087 r-isotopes obtained by IBM-2

results . The effective g- charges are taken as g,= -0.02 and g, = 1.39

B(M1; Ji —Jp)
3~ B2

I T I R
T I R
I I R
DT B BT

T I R
TR I R
T I T
TR I R
TR I R
e

142 |Page




Chapter Four Result and Discussion

Table (4-45): The B(M1; J; —Jy) values , in the units of (u%), and the magnetic dipole
moments for the 27 states (s, ) in the unit of (uy), for **zr-isotopes obtained by 1BM-2

results . The effective g- charges are taken as g,=-0.02 and g, =1.39
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4.3.3 6- mixing ratios

The &-mixing ratios of the y-transitions from the excited states in 2'%Zr-isotopes is also

calculated in the present work using the following relationship

E2 — E2 eb
S5(E2{, ) =0835E, xA(EZ{ )( AN)
Where E, is the transition energy in (MeV) and A(E%M)is in units of (<2 ) and defined as
UN

the ratio of the reduced E2 matrix element to the M1 matrix elements.
The 6—mixing ratios calculated in the present work which are results of IBM-2 have been
shown in the Table (4-46) to (4-59), these results were obtained by using same boson effective

charges e, , e, for E2 and g, g, factors for M1 strengths. Figure (4-30) shows the variation of

o for the group of 27 — 2/ (i = 2, 3, 4 and 5) transitions and can be seen that both the

magnitude and sign of & obtained with chosen value of Majorona term &, = -0.29 which is the

value obtained from the energy fit for *%°zr.
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Table (4-46): The value of 8-mixing ratio obtained by IBM-2 for the ®Zr isotope .The
IBM-2 results are obtained using the parameters (e, =0.175eb, e_=0.174eb), g, = 2.839

uyand g,=-0.02 u, .

E,(MeV) Tl:]an_s:tjon E,(MeV) 6-mixing ratios(eb/py)
i f IBM-2
0.985 2, >2; 0.599 2.46551
1.934 2, > 2] 1.557 -0.04417
2.119 2, > 2 1.733 0.27901
2.252 2; > 2] 1.866 -0.091357
1.934 2, > 2, 0.949 -0.60543
1.586 3 »>2; 1.200 5.84383
1.586 3, >2; 0.601 3.7561
1.586 31 » 2% 0.348 0.8727777
1.586 3f - 27 0.533 0.2502842
1.586 37 »2¢ 0.666 16.34244
2.628 17 > 27 2.242 -0.1953517
2.628 17 - 2% 1.643 -0.0287342
2.628 17 - 2% 0.694 1.343335
2.628 17 - 27 0.509 -0.156789
2.628 1 - 2¢ 0.376 0.481479
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Table (4-47): The value of 8-mixing ratio obtained by IBM-2 for the ®Zr isotope .The
IBM-2 results are obtained using the parameters (e, =0.183eb, e_=0.239eb), g, = 2.839

uyand g,=-0.02 u, .

Transition 6_—mixing
Ei (MeV) 3 >3, E,(MeV) ratios(eb/un) |
IBM-2
1.232 25 —2f 0.799 5.3219
2.225 25 > 2 1.792 -0.104313
2.627 2; > 2; 2.194 0.520509
2.781 2; —>2; 2.348 -0.308158
2.225 25 —>2; 0.993 -0.429784
1.965 3f > 2/ 1.532 -1821.5030
1.965 3F > 2} 0.733 7.891340
1.965 37 - 2% 0.260 1.224160
1.965 37 - 2} 0.662 0.4902483
1.965 35 - 2¢F 0.816 -2.373418
3.192 17 > 27 2.759 -0.7736616
3.192 1§ - 23 1.960 -0.01503187
3.192 1§ - 2% 0.967 1.305612
3.192 17 - 2f 0.565 -0.2280955
3.192 1} - 27 0.411 0.2969277
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Table (4-48): The value of d-mixing ratio obtained by IBM-2 for the *Zr isotope .The
IBM-2 results are obtained using the parameters (e, =0.17eb, e_=0.156¢eb), g, = 2.839 x,

and g,=-0.02 g, .

£ (MeV) T\}rarfgion £ (MeV) 6-mixing ratios(eb/p)
i f IBM-2
1.037 25 > 2f 0.608 1.829340
1.637 20 > 2f 1.208 -0.02552702
1.743 2; > 2f 1.314 -1.324562
2.206 2; »2f 1.777 -0.01460117
1.637 25 > 23 0.600 -0.06959940
1.850 3 > 2 1.421 1.350493
1.850 3 —>2; 0.813 2.622810
1.850 37 > 2% 0.213 0.08233342
1.850 37 - 2f 0.107 0.07387262
1.850 37 > 27 0.356 29.243050
2.420 17 - 2% 1.991 -0.3482842
2.420 17 - 23 1.383 -0.02812837
2.420 17 > 23 0.783 2.146860
2.420 17 - 27 0.677 0.05121828
2.420 1 > 27 0.214 -0.4272834
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Table (4-49): The value of 8-mixing ratio obtained by IBM-2 for the *Zr isotope .The
IBM-2 results are obtained using the parameters (e, =0.1304eb, e _=0.11eb), g, = 2.995

uyand g,=-0.02 u, .

£ (MeV) T‘]rariigion £ (MeV) 6-mixing ratios(eb/uy)
i f IBM-2
1.428 25 —>2f 0.915 0.2667982
1.714 25 > 2] 1.201 -0.1110435
1.914 2; —>2f 1.401 -0.4773804
2.549 2; > 2/ 2.036 -0.4375679
1.714 25 —>2; 0.286 -0.04053773
2.272 3 —>2f 1.759 0.7120001
2.272 3 —>2; 0.844 0.5286462
2.272 3% - 2% 0.558 -0.005777884
2.272 3+ > 2} 0.358 0.2049621
2.272 3% - 2% 0.277 0.02532076
2.753 17 - 27 2.240 -0.2399552
2.753 1+ > 2% 1.325 -0.1402560
2.753 1+ > 28 1.039 0.4003437
2.753 17 - 27 0.839 0.08978785
2.753 1} > 28 0.204 0.008834369
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Table (4-50): The value of 8-mixing ratio obtained by IBM-2 for the ®Zr isotope .The
IBM-2 results are obtained using the parameters (e, =0. 0O4eb, e_=0.131eb), g, = 0.725

uyand g,=-0.02 u, .

£\ (MeV) T;arls)i'f]ion £ (MeV) 6-mixing ratios(eb/pw)
i f IBM-2

1.793 25 >27 0.903 0.04952659
1.808 2; > 2f 0.918 -6.426427
2.707 2; > 27 1.817 64.261670
2.713 28 >2; 1.823 -0.2337036
1.808 2; —>2; 0.015 -0.001094273
2.388 3 —>2f 1.498 8.566548
2.388 3 —>2; 0.595 3.025233
2.388 3] > 2% 0.580 -0.1105472
2.388 37 > 2F 0.319 -0.03135578
2.388 3f > 2¢ 0.325 0.04473265
2.291 1§ - 27 1.401 -5.773053
2.291 17 - 23 0.498 -1.829359
2.201 1f - 2% 0.483 0.01897847
2.291 1+ - 2} 0.416 -0.02519172
2.291 1f - 23 0.422 -0.1079777
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Table (4-51): The value of é—mixing ratio obtained by IBM-2 for the %z isotope .The
IBM-2 results are obtained using the parameters (e, =0. 0O4eb, e_=0.125eb), g, = 0.725

uyand g,=-0.02 g, .

£ (MeV) T;arzi?on £, (MeV) 6-mixing ratios(eb/un)
i f IBM-2
1.748 25 —>2; 0.888 5.699437
1.763 25 > 2 0.903 -0.1585751
2.623 2; > 2] 1.763 1.408785
2.647 20 2] 1.787 88.099220
1.763 25 —>2; 0.012 0.006987436
2.328 3F > 2] 1.468 7.574205
2.328 3 —>2; 0.580 0.02739461
2.328 3f > 2% 0.565 -5.376200
2.328 37 > 2} 0.295 -0.2776594
2.328 35 - 2% 0.319 -0.02881465
2.231 1} > 2f 1.371 -5.088652
2.231 1} - 23 0.483 -0.05810928
2.231 1} > 2% 0.468 3.115738
2.231 1} > 2 0.392 0.5311691
2.231 1} > 2¢ 0.416 -0.02497165
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Table (4-52): The value of 8-mixing ratio obtained by IBM-2 for the **Zr isotope .The
IBM-2 results are obtained using the parameters (e, =0. 044eb, e_=0.11eb), g, = 0.725

uyand g,=-0.02 u, .

£\ (MeV) T;arls)i'f]ion £, (MeV) 6-mixing ratios(eb/pw)
i f IBM-2

1.753 2; > 2f 0.890 -1.689853E+08
2.268 2, > 2 1.405 -0.05394498
2.634 2; > 2f 1.771 0.1807715
3.151 2; > 27 2.288 -79.538620
2.268 2; > 2} 0.515 -1.352146
2.662 3 > 2/ 1.799 -22.313180
2.662 3 —>2; 0.909 -16.742700
2.662 37 - 2% 0.394 3.655371
2.662 37 - 2 0.028 -0.3643988
2.662 37 - 2F 0.489 -0.2542454
2.640 1§ - 27 1.777 -5.280875
2.640 1} - 27 0.887 -0.02394567
2.640 1} - 2% 0.372 -7.450555
2.640 1f - 2} 0.006 -0.06170274
2.640 1§ - 23 0.511 -0.04909090
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Table (4-53): The value of 8-mixing ratio obtained by IBM-2 for the *Zr isotope .The
IBM-2 results are obtained using the parameters (e, =0. 0468eb, e_=0.09eb), g, = 0.109

uyand g,=-0.02 u, .

£ (MeV) TJran_s)itJion £ (MeV) 6-mixing ratios(eb/pw)
i f IBM-2
2.349 2; > 2! 1.072 4.255815
2.609 2, > 2F 1.332 -3.195287
2.705 2; 27 1.428 -13.034730
3.900 2; —> 2! 1.623 5.812901
2.609 2 —>2; 0.260 -0.02330888
3.043 3F > 2! 1.766 3.761372
3.043 3 —2; 0.694 3.954921
3.043 37 > 2% 0.434 -0.1015568
3.043 37 > 2f 0.338 -0.6457117
3.043 37 > 2% 0.143 0.1516502
2.830 1F - 2¢ 1.553 2.870311
2.830 17 -» 23 0.481 -0.08794313
2.830 1} - 2% 0.221 0.3822096
2.830 1} - 2} 0.125 0.1998432
2.830 1f - 2¢ 0.070 0.04755854
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Table (4-54): The value of 8-mixing ratio obtained by IBM-2 for the *Zr isotope .The
IBM-2 results are obtained using the parameters (e, =0. 0526eb, e_=0.16eb), g, = 0.109

uyand g,=-0.02 u, .

£ (MeV) TJran_s)itJion £ (MeV) 6-mixing ratios(eb/uy)
Ead IBM-2

1.596 25 —>27 0.653 -35.914020
1.771 25 > 2 0.828 -0.2862242
2.253 2; —>2f 1.310 3.862088

2.540 2; —>27 1.597 -34.147740
1.771 2; —2; 0.175 -0.5657341
2.346 3, >2; 1.403 11.337900
2.346 3, >2; 0.750 -2.643913

2.346 37 - 2% 0.575 29.769620

2.346 3F > 2} 0.093 -2.680118

2.346 37 > 2% 0.194 -0.8363773
2.292 17 - 27 1.349 -10.706490
2.292 1} > 23 0.696 -0.1230151
2.292 1§ - 2% 0.521 -24.225770
2.292 1 - 2} 0.034 -0.05422030
2.292 1§ - 23 0.248 -0.7176009
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Table (4-55): The value of 8-mixing ratio obtained by IBM-2 for the *®Zr isotope .The
IBM-2 results are obtained using the parameters (e, =0. 2312eb, e _=0.19eb), g, = 1.648

uyand g,=-0.02 g, .

£ (MeV) TJran_s)itJion £ (MeV) 6-mixing ratios(eb/uy)
i f IBM-2
0.720 25 > 27 0.484 0.03353068
0.992 25 =2 0.756 -0.9954945
1.149 2; > 27 0.913 0.2352935
1.246 28 > 2] 1.010 1.711900
0.992 25 —>2; 0.272 -0.1865394
1.192 3, >2; 0.956 25.080570
1.192 3 —>2; 0.472 4.986140
1.192 37 > 2% 0.200 -1.905698
1.192 3F > 2} 0.043 -0.6732090
1.192 3f - 2¢ 0.054 5.349079
1.539 1} > 2f 1.303 -0.09050661
1.539 1} > 23 0.819 1.929985
1.539 1 -» 23 0.547 0.6091802
1.539 1+ - 2f 0.390 -0.3323646
1.539 1f - 2¢ 0.293 -0.06083475
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Table (4-56): The value of 8-mixing ratio obtained by IBM-2 for the *%Zr isotope .The
IBM-2 results are obtained using the parameters (e, =0. 2387¢eb, e_=0.178eb), g = 1.39

uyand g,=-0.02 g, .

£\ (MeV) T;arls)i'f]ion £ (MeV) 6-mixing ratios(eb/pw)
i f IBM-2
0.908 2; > 27 0.766 0.02224118
1.243 25 =2 1.101 -4.881112
1.577 2; > 27 1.435 0.05617370
1.658 28 —>2f 1.516 1.445071
1.243 25 —>2; 0.335 -0.7882174
1.412 3 2/ 1.270 12.417440
1.412 3 —>2; 0.504 14.256380
1.412 3F > 2% 0.169 -2.546024
1.412 37 > 2} 0.165 -2.519345
1.412 3F > 2¢ 0.246 -0.4391804
1.752 1} > 2f 1.610 -0.05685129
1.752 1} - 23 0.844 1.998139
1.752 1 - 2% 0.509 0.1459061
1.752 1+ - 2} 0.175 -0.2716937
1.752 1} > 2¢ 0.094 -0.01538062
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Table (4-57): The value of 8-mixing ratio obtained by IBM-2 for the **Zr isotope .The
IBM-2 results are obtained using the parameters (e, =0. 26175¢eb, e _=0.21eb), g = 1.39

uyand g,=-0.02 g, .

E: (MeV) TJran_s)itJion £ (MeV) 6-mixing ratios(eb/uy)
i f IBM-2

0.955 2, > 2] 0.815 4.250752

1.389 2, > 2! 1.249 -0.5118751
1.852 2, > 2] 1.712 -0.1669035
1.907 2. > 2] 1.767 0.3689441
1.389 2; > 2, 0.434 -1.569667
1.264 3, > 2/ 1.124 9.923706

1.264 3 —>2; 0.309 8.871681

1.264 37 - 2% 0.125 1.694591

1.264 37 - 2F 0.588 76.942990
1.264 37 - 2¢ 0.643 0.2765769
2.309 17 - 27 2.169 -0.4581255
2.309 17 - 2% 1.354 -0.3243822
2.309 17 - 2% 0.920 0.7976437
2.309 17 - 27 0.457 0.8771442
2.309 17 - 2¢ 0.402 -0.2950890

155 | Page



Chapter Four Result and Discussion

Table (4-58): The value of 8-mixing ratio obtained by IBM-2 for the *®Zr isotope .The
IBM-2 results are obtained using the parameters (e, =0. 21eb, e _=0.1877eb), g, = 1.39

uyand g,=-0.02 g, .

£ (MeV) TJran_s)itJion E,(MeV) 6-mixing ratios(eb/uy)
i f IBM-2
0.888 2, > 2, 0.774 2.733126
1.294 2; > 2/ 1.180 -0.4048875
1.601 2, >2; 1.487 0.7446577
1.709 2. > 2] 1.595 31.067320
1.294 2, > 2, 0.376 -0.7490517
1.160 3 =2 1.046 4.471070
1.160 3, >2; 0.272 115.413300
1.160 37 - 23 0.089 1.002137
1.160 37 - 2f 0.441 1.568506
1.160 37 - 22 0.549 -0.8948597
1.819 17 - 27 1.705 -0.3919338
1.819 1} - 27 0.931 -0.4949175
1.819 17 - 2% 0.570 0.4231160
1.819 1+ - 2f 0.218 -0.9410841
1.819 17 - 22 0.110 0.001133918
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Table (4-59): The value of 8-mixing ratio obtained by IBM-2 for the *®Zr isotope .The
IBM-2 results are obtained using the parameters (e, =0. 21eb, e_=0.1877eb), g, = 1.39

uyand g,=-0.02 u, .

£\ (MeV) TJlrarls)iSion £ (MeV) 6-mixing ratios(eb/p)
i f IBM-2

0.646 25 > 2f 0.505 1.612056
0.908 25 > 2 0.767 0.06726045
1.023 2, > 2f 0.891 1.228737
1.189 20 —>2; 1.048 -0.3634193
0.908 25 —2; 0.262 -0.1810648
0.936 3f > 2] 0.795 1.830920
0.936 3, > 25 0.290 -3.190639
0.936 3; -2 0.028 0.1271712
0.936 37 - 2 0.096 0.4352536
0.936 35 - 27 0.253 -0.09108128
1.039 1§ > 2§ 0.898 -0.2917548
1.039 1 - 23 0.393 0.2580431
1.039 17 > 23 0.131 -0.5663972
1.039 1§ - 2} 0.016 -0.001844530
1.039 17 - 2¢ 0.150 0.1302961
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Figure (4-30): The multipole mixing ratio 8, of 2] — 2, transitions is plotted against &, for

1057r.
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Chapter five

Conclusions and future works

5-1 Conclusions

It is concluded that the mixed symmetry 13#; and 37, levels are affected by the Majorana
force parameters &; and &5 respectively, while the parameter &, affects the energies of
all levels which are considered to have mixed symmetry character, and it affects strongly
the 2 states.

The mixed symmetry character of 13, and 33, levels are confined to one level only
whereas the 2}, state may share the mixed symmetry character with its neighboring
levels and this leads to some difficulties in identifying these states since the sharing
weakens the mixed symmetry character over a number of 27, levels.

In general, the calculated result of IBM-1 and IBM-2 for B(E2) transitions in all
considered Zr-isotopes nearly best fit, and show an increase in their values for N= 40
and 42, then decreasing with the increase in the neutron number until N=58, again the
values is increasing with increase in the neutron number for most transitions. On other
hand the calculated values of B(E2) transition are decreasing with the increase in the
neutron number and approaching the experimental values, like as B(E2; 23 — 27). The
experimental B(E2) values were not always in good agreement throughout all considered
Zr - isotopes. The calculated electric quadrupole moments for the first excited states
Q(27) in Zr — isotopes are in reasonable agreement between IBM-1 and IBM-2 results
and agree with the available experimental data.

The properties of the magnetic dipole operator have been studied only by the framework

of IBM-2 bhecause of the absence of the M1 transitions in the IBM-1. It is concluded that
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the properties of M1 operator are exclusively determined by the parameters of g, and g,
factors, the magnetic dipole moments p,+ and there was agreement between the
calculated and experimental data.

e The calculated delta mixing ratios using IBM-2 model are reflecting the characteristic of
initial state as symmetry or mixed symmetry state. It is concluded that the delta mixing

ratios are very sensitive to the Majorana terms.
5-2 Future Works

1- It is interesting to study the odd- even nuclei (isotopes) by using the interacting boson -
fermions model (IBFM) to examine the behaviors of the IBM parameters through the

isotopes.

2- Comparison study of Zr isotopes with Ru, Mo and Pb groups of isotopes may be
beneficial to overcome the lack of experimental data and extrapolate or interpolate the

descriptions of these nuclei.
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