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Abstract 

     The structure of the Zr-isotopes with proton number (Z=40), and with neutron’s number 

N=40,42,44,46,48,52, 54,56,58,60,62,64,66, and 68 have been studied theoretically using the 

framework of the interacting boson models IBM-1 and IBM-2. The symmetry limits of the 

considered nuclei were studied using the energy of the second excited state relative to the first 

excited state. The considered nuclei were found to be transitional in the region U(5) → SU(3) 

and O(6). The properties of the lowest mixed symmetry states such as the   
 ,  

 , and     
 states 

are calculated by IBM-2 model in the vibrational, rotational and gamma unstable (SU(5), SU(3), 

and O(6)) of Zr-isotopes and studied in detail. It was found that the mixed symmetry    
  and 

  
  levels are affected by the Majorana force parameters    and     respectively, while the 

parameter    affects the energies of all levels which are considered to have mixed symmetry 

character, and it affects strongly the 2
+ 

states, as well as controlling the sharing between 

    
 state and its neighbors of 2

+
 states. It is also found that the mixed symmetry character of    

  

and   
  levels are confined to one level only in each isotope whereas the     

 state may share the 

mixed symmetry character with its neighboring levels.  

     In the framework of IBM-1 and IBM-2, the properties of energy level with positive parity of 

the ground, beta and gamma bands were studied. In general, the calculated low-lying positive 

parity energy spectra are better reproduced by the framework of IBM-2 than those of IBM-1 in 

most cases. This is due to the proton-neutron degree of freedom and the absence of these states 

in the IBM-1 model. The electromagnetic properties of E2 and M1 operators were investigated 

and the results were analyzed. The properties of E2 operator depend explicitly on the effective 

charges used in both IBM-1 and IBM-2. It is found that the different values of α2 in the 

framework of IBM-1 for each Zr-isotopes also different values for both (     and    ) in the 
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framework of IBM-2 for each Zr-isotopes  are used to generate the E2 properties such as B(E2) 

and Q(2
+
) throughout all considered Zr-isotopes. On the other hand the properties of the 

magnetic dipole operator have been studied only by the framework of IBM-2 because of the 

absence of the M1 transitions in the IBM-1. It is found that the M1 properties clearly depend on 

the     and     in the framework of the IBM-2. Fixed values of (           ) for all Zr-

isotopes but changes the    for them were adopted in the calculations of IBM-2 to generate the 

M1 properties such as the B(M1),      and δ(E2/M1) mixing ratios throughout these isotopes. It 

is found that the percentage of F-spin is to show the full symmetric and mixed symmetry of 

states. The small values of delta mixing ratios δ(E2/M1) was obtained with transition from 

mixed symmetry states to those of full symmetry.  
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                                                               Chapter One  

Introduction  

    The atomic nucleus is an incredibly complex system, where dozens and sometimes hundreds 

of particles interact in extremely complicated ways. That is a nucleus is quantum system of 

many nucleons interacting mainly by strong nuclear interaction. Each nucleon is made up of 

three quarks that interact via the strong force. The residual strong force is responsible for the 

short ranged attractive nuclear force that holds the nucleus together, and an additional Coulomb 

interaction between protons provides a repulsive force. Theory of atomic nuclei must describe 

the Structure of nucleus (distribution and properties of nuclear levels) and on the other hand 

Mechanism of nuclear reactions (dynamical properties of nuclei). It is clear that with such a 

complex system, a single model that describes all features of nuclei and includes all nuclear 

interactions will be impossible to implement. As such, identifying the underlying symmetries, 

the important degrees of freedom, and the most relevant interactions is extremely important for 

understanding the general behavior of the nucleus, here we can discuss briefly the nuclear 

models. 

1.1 Nuclear models 

1.1.1 Liquid drop model: 

      One of these models is liquid drop model that was the first model to describe nuclear 

properties. A detailed theory of the nuclear binding, based on highly sophisticated mathematical 

techniques and physical concepts, has been developed by Bruecknet and Co-Workers (1954-

1961) [1]. A much cruder model exists in which the finer features in the nuclear force are 

ignored, but the strong inter-nucleon attraction is stressed [2]. This model is proposed in the 
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1935 by Bohr [3], and it provides a reasonable explanation for many nuclear phenomena such 

as, nuclear masses nuclear binding energy, nuclear fission, β-decay, radius, density, surface 

tension and the volume energy [4].  

       It assumes that the nucleus might be expected to behave very much like a droplet of some 

liquid in which the forces of attraction and repulsion between the particles in the liquid are 

balanced. The basis of this model is on the short range of the nuclear forces, together with the 

additively of the volumes and binding energies [1,2,3,4]. The essential assumptions are: 

 The nucleus like a droplet is incompressible matter so that R   A
1/3

. 

 The force between nucleons is considered to be spin independent as well as charge 

independent (the nuclear force is identical for every nucleon and in particular does not 

depend on whether it is a neutron or a proton). 

 The nuclear forces have short-range character (saturation). 

    For most nuclei with A ˃ 20 according to the liquid drop model, the binding energy is well 

reproduced by a semi-empirical mass formula. An excellent parameterization of the binding 

energies of nuclei in their ground state was proposed in 1935 by Bethe and Weizs ̈cker [5]. This 

formula relies on the liquid-drop analogy but also incorporates two quantum ingredients. One is 

an asymmetry energy which tends to favor equal numbers of protons and neutrons. The other is 

a pairing energy which favors configurations where two identical fermions are paired [4,5,6]. 

The mass formula of Bethe and Weizs ̈cker is 

 B(A,Z) = avA − asA
2/3

 − ac [Z
2
/A

1/3 
]− aa [(N − Z)

2
/A] + δ(A) .                                                (1-1)  

and av , as , ac ,aa , δ  are volume, surface, coulomb, asymmetry and pairing parameters term 

respectively [4,5]. 
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Fig. (1-1): summary of liquid drop model treatment of the average binding energy [5,6]. 

 

1.2 The Fermi gas model 

 
     In this model, nuclei are considered to be composed of two fermion gases, a neutron gas and 

a proton gas. The particles do not interact, but they are confined in a sphere which has the 

dimension of the nucleus. The Fermi model is based on the quantum statistics effects on the 

energy of confined fermions. The Fermi model provides a means to calculate the parameters 

term av, as and aa in the Bethe–Weizs ̈cker formula, directly from the density ρ of the nuclear 

matter. According to this model, we can calculate the energy, momentum (called Fermi 

momentum) and wave number for the nucleus   [5,6,7,8] .   

      In a system of A = Z +N nucleons, the densities of neutrons and protons are respectively 

n0(N/A) and n0(Z/A) where n0 ∼ 0.15 fm
−3

 is the nucleon density. The total kinetic energy is then 

[6]  

E = EZ + EN = 
 

 
 [Z 

  

   
(3π

2    

 
)
2/3

 + N 
  

   
(3π

2    

 
)
2/3

]                                                           (1-2) 

Volume energy 

Surface energy 

Coulomb energy 

          Asymmetry energy 

Binding energy 
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1.3 Shell model  

    One important first step that was made by Jensen and Mayer was the development of the 

nuclear shell model [9]. In atomic systems, a central Coulomb potential is provided by the 

protons in the nucleus. Electrons are fermions, and as they are added to the system, they fill up 

electron orbits. With certain specific numbers of electrons, the orbits form closed shells that no 

longer interact as strongly with other atoms, or additional outer electrons. The nuclear system 

was found to behave in a similar way, but unlike the Coulomb central potential that exists in the 

atoms, the nuclear central potential is instead generated by the nucleons themselves. This 

assumption about the formation of shells in nuclei dramatically simplifies any attempts to model 

the structure of excited states in nuclei. The general energy spacing of possible proton and 

neutron orbits can be roughly predicted using a three-dimensional quantum Harmonic oscillator, 

an  ̂2
 interaction, and a spin-orbit coupling term. Constructing a basis out of the most likely 

configurations for the nucleons to occupy, and applying the relevant interactions, can in many 

cases reproduce the structure of the low-lying excited states of nuclei. 

     The main restriction with such a model is that even though the vastly complex system of the 

nucleus was dramatically simplified, it is still too complex to model nuclei with a large number 

of valence nucleons. The shell model is primarily applicable to nuclei that lie near closed shells, 

but as more valence nucleons are added to the system, an interesting type of behavior called 

collective motion arises. 

       The shell model that takes into account the behavior of individual nucleons and distribution 

of nucleons in the nuclear shells has been proposed to describe the stability of the magic 

numbers. In the nucleus, if the number of neutron (N) or the number of proton (Z) is equal to 

one of the following magic number (2, 8, 20, 28, 50, 82 and 126) or both are the magic numbers 

(called doubly magic) shell model can treat it. [10,11]. 
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     In the shell model, the nucleons in the nucleus form the shells (orbits) which are specified by 

their own potential and quantum numbers [12.13]. The nucleons are distributed due to the Pauli 

Exclusion Principle which requires that each nucleon has a unique set of quantum numbers to 

describe its motion in orbit [10]. The basic assumption of the shell model is that the effects of 

inter-nuclear interactions can be represented by single- particle potential [11,12]. Single particle 

model is a simple case of shell model, according to which the motion of an individual nucleon is 

particularly independent of that of any other nucleon, but the motion of any nucleon is governed 

by attractive average potential (self-consistent potential) that is formed as a result of interaction 

of the nucleon with other nucleons. This potential can be replaced as an approximation by a 

central potential that changes many body problem to one body problem [9,10]. 

     For the harmonic oscillator potential, the stable nuclei are those which have closed proton 

and neutron shells, which represent the magic numbers 2, 8 and 20. To produce the other magic 

numbers (28, 50, 82 and 126) it must be used by another more realistic potential, harmonic 

oscillator with spin-orbit interaction. In 1949, M. G. Mayer and H. D. Jenson suggested that a 

spin-orbit potential [9,10,11,12,13] should be added to the centrally symmetric potential to 

generate the magic numbers (28, 50, 82, and 126). This term represents the interaction of spin of 

the nucleon ( ⃗) and its orbital angular momenta ( ⃗ ). The spin-orbit interaction, that is 

proportional to the quantity (  ⃗⃗  ⃗ ), is strong comparing with the interaction between the 

nucleons themselves.  

     The shell model can predict the stability and abundance of the magic numbers, spin and 

parity of the ground states, magnetic dipole moment (  ⃗ ), and Quadrupole moment. Even 

through the shell model is successful to predict these properties, it has some shortcomings to 

explain the following  
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 The large magnitude of the nuclear Quadrupole moments. 

 The spin and parity for the ground state band of the nuclei 150     190 and    220. 

 The difference between experimental and theoretical magnetic dipole moments for some 

nuclei. 

 The excited states of some even-even nuclei. 

1.4 Collective model 

     This model is explaining the structure of nuclei with even numbers of protons and neutrons 

(known as even-even nuclei). Nuclei that have closed proton or neutron shells have a spherical 

shape. As valence nucleons are added to the system, the shape remains spherical but becomes 

softer, and vibrational structure is visible in the excited states of such nuclei. This softening of 

the spherical shape is the onset of collectivity, where collective motion refers to the valence 

nucleons moving together as a whole.                                                                 

     Excited states in nuclei decay to lower energy states via gamma-decay, where a gamma-ray 

of a particular multipolarity is emitted from the nucleus. The vibrational structure that appears at 

the onset of collectivity is a quadrupole oscillation around a spherical equilibrium shape, and the 

transitions that occur as a vibrational state decays to a more spherical state is typically an 

electric quadrupole (E2) transition. Strong transitions of this type are one of the signatures of 

collective behavior.  

      As even more valence nucleons are added to the system, a quadrupole deformed equilibrium 

shape becomes energetically favorable in nuclei. This deformed shape is associated with 

rotational structure in the excited states in such nuclei. The geometric nature of the transition 

from spherical to deformed makes using a geometric model a clear choice, and such a model 

was developed by Bohr and Mottelson [7],  
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     In this model it is assumed that the outer most nucleons within the nucleus, exert a 

centrifugal pressure on the surface of the nucleus, as a result of it, the nucleus may be deformed 

into a permanent non spherical shape and hence, the surface may undergo oscillations due to the 

liquid drip model under the effect of exerted forces on the surface [14].   

      ⃗⃗ ⃗ 

    

 

   Spherical core                                                       ⃗⃗⃗ ⃗                                          deformed core 

Fig.(1-2) : change the spherical shape of the nucleus to non-spherical due to a centrifugal 

pressure on the surface of the nucleus 

 

       As a result of the deformation, the surface of the nucleus may undergo oscillations and it 

rotates about an axis perpendicular to the symmetrical axis that causes to appear the excited 

states. The collective model generalizes the result of the shell model by considering the effect of 

a non-spherically symmetric potential, which leads to substantial deformations for heavy nuclei 

and consequently large value of electric quadrupole moments. 

     One of the most striking consequences of the collective model is the explanation of low –

lying excited states of heavy nuclei. There are two major types of collective motion which are 

rotational motion that is a nucleus with a non-zero quadrupole moment that can have excited 

levels due to rotational perpendicular to the axis of symmetry, and the vibrational motion, in 

which there are modes of vibration in which the deformation of the nucleus due to the 

oscillation of electric quadrupole moment oscillates about its mean value. It could be that this 

mean value is very small, in which case the nucleus is oscillating between an oblate and a 

prolate spheroidal shape. It is also possible to have oscillations with different shapes, the small 

oscillations about the equilibrium shape perform simple harmonic motion [14, 15].  
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The shape of the nucleus can then be parametrized from a spherical shape corrected by the 

spherical harmonics Yλμ(θ,φ) 

R(θ, φ) = Ro [  ∑ ∑    
 
               ]                                                                          (1-3) 

     Where Ro is the radius of a sphere of the same volume,     a variable to characterize the 

shape of the nucleus. The term λ = 0 describes volume variations, λ = 1 the translation of the 

system. The term with λ = 2 corresponds to quadrupole deformation and λ = 3 to octupole 

deformation. Using the transformation from the laboratory frame to the intrinsic frame, the five 

αλ=2,μ parameters are reduced to three real parameters α2,0, α2,2 = α2,−2 and α2,1 = α2,−1 = 0. These 

variables can be parameterized as the following [14]. 

                                  (1-4) 

           
 

√ 
                            (1-5) 

     Where   represents the extent of the quadrupole deformation,   gives the degree of axial 

asymmetry. Most nuclei are axially symmetric, or close to it, at least in their ground states. For 

an axially symmetric nucleus, the potential has a minimum at   = 0
◦
. A common convention 

(Lund conventions) for the ranges of the β and   variables is that β >0,   = 0
◦
 for an axially 

symmetric prolate nucleus and that β > 0,   = 60
◦
 gives an axially symmetric oblate nucleus as it 

is shown in Fig.(1-3). Note that for β < 0,   = 0
◦
, the nucleus is oblate [14,15]. If   is not a 

multiple of 60
◦
, one says that the nucleus is triaxial. 
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Fig. (1-3): Nuclear deformation in the (β,  ) plane. The Lund conventions are used. The 

four cases (  =120
◦
, 180

◦
, 240

◦
, 300

◦
) correspond to the cases with   =0

◦
 and 60

◦
 but with 

different orientations of their axis. The area 0
◦
<  <60

◦
 (in grey) is then sufficient to 

describe the nuclear deformation 

 

1.5 Interacting boson model (IBM) 

    The interacting boson model originated from early ideas of Feshbach and Iachello [15,16], 

who in 1969 described some properties of light nuclei in terms of interacting bosons, and from 

the work of Janssen, Jolos and Donau (1974)  [16, 17], who in 1974 suggested a description of 

collective quadrupole states in nuclei in terms of a SU(6) group. The latter description was 

subsequently cast into a different mathematical form by Arima and Iachello, 1975 [17, 18], with 

the introduction of an s-boson, which made the SU(6), or rather U(6), structure more apparent. 
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The success of this phenomenological approach to the structure of nuclei has led to major 

developments in the understanding of nuclear structure [15, 16, 17, 18]. 

     The major new development was the realization that the bosons could be interpreted as 

nucleon pairs (Arima et al., 1977) [18, 19, 20] in much the same way as Cooper pairs in the 

electron gas (Cooper, 1956). This provided a framework for a microscopic description of 

collective quadrupole states in nuclei and stimulated a large number of theoretical 

investigations. An immediate consequence of this interpretation was that, since one expected 

both neutron and proton pairs, one was led to consider a model with two types of bosons, proton 

bosons and neutron bosons. In order to make the distinction between proton and neutron bosons 

more apparent, the resulting model was called the interacting boson model-2, while the original 

version retained the name of interacting boson model-1[20, 21, 22]. 

     Subsequently, the model was further expanded by introducing explicitly unpaired fermions, 

thus allowing one to treat odd-even nuclei (Iachello and Scholten, 1979) [23]. Of this extension 

there exist now two versions, called the interacting boson-fermion model-1 and -2 [23,24]. In 

recent years, yet more extensions have been developed, including mixing of configurations, 

giant resonances, etc. As a result, there is hardly any aspect of nuclear structure that has not 

been touched by IBM [16, 17, 18, 19, 20, 21, 22]. 

    The interacting boson model is an algebraic collective model that has a microscopic 

foundation in the shell model [16]. As mentioned above, one of the keys to understand nuclei is 

isolating the important interactions and degrees of freedom. The interacting boson model 

forgoes some of the single particle structure of the shell model, and focuses on the L = 0 and   L 

= 2 couplings that play a dominant role in the low-lying states in even-even collective nuclei 

[17]. The symmetries in this model allow successful descriptions of vibrational, axially-

symmetric deformed, and deformed gamma-soft collective structure. 
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     When the proton-neutron degree of freedom is included in the interacting boson model, an 

additional class of states called mixed-symmetry states is allowed. When compared to their 

symmetric counterparts, these states have a negative phase factor between the proton and 

neutron boson components of the wave function. The experimental signatures for these mixed-

symmetry states are strong Ml transitions to symmetric states [15]. 

     The interacting boson model is a useful framework for the study of quantum phase 

transitions in nuclei. By using the method of coherent states, the algebraic structure of states in 

this model can be related to geometric variables β and γ [15]. With this formalism, an energy 

potential surface for the ground state can be found, which can help illustrate the transition from 

spherical to deformed between the symmetries. The behavior of the minima in energy potential 

surface shows that both first and second order phase transitions should occur in the model. 

     One of the most fundamental models in nuclear structure is the shell model, which was 

developed by Jensen and Mayer [11]. It is very useful for describing nuclei with a small number 

of valence nucleons, but as one moves away from closed shells, and collectivity takes hold, the 

model-space becomes much too large for calculations to be possible even on modern computers. 

At low energies in the shell model for even-even nuclei, pairs of identical valence nucleons 

occupy the same orbits, with the pairs coupling to L = 0 at the lowest energy and L = 2 at a 

higher energy. Many other configurations are possible, but at low energies, truncating the model 

space to include only those two-particle configurations that lead to an interesting model that has 

a much smaller model space, and wide applicability. This model is the interacting boson model 

(IBM) [25].  

     In the last decade the neutron-rich nuclei in the 40   Z   50 region have attracted both 

theoretical and experimental attention. They were extensively studied via spontaneous or 
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induced fission reactions. Nuclei from this region of Segr´e chart exhibit vibrational, 

transitional, and rotational types of collectivity.  

     Such structures naturally appear in the framework of the interacting boson model (IBM) [26] 

which has been shown to be successful in the description of nuclear collective properties. The 

IBM in its first version, known as IBM-1, is based on the assumption that nuclear collectivity 

can be expressed in terms of s and d bosons [26, 27]. The model Hamiltonian is constructed 

from a set of 36 operators, bilinear in the boson creation and annihilation operators and 

generating the U(6) Lie algebra. Dynamical symmetries occur if the Hamiltonian can be written 

as a combination of invariant (or Casimir) operators of specific subalgebras of U(6) [26, 27] and 

three such cases occur, namely the spherical vibrational limit U(5), the deformed limit SU(3), 

and γ-soft limit SO(6).  

        We begin from a strongly truncated model space, however, by keeping the pairing and 

quadrupole force components within the Interacting Boson Model (IBM) approximation [28]. 

This model approximates the interacting many-fermion problem using as the major degrees of 

freedom, N pairs of valence nucleons that are treated as bosons, carrying angular momentum 

either 0 (the s bosons) or 2 (the d bosons). This model is very appropriate in order to describe 

even-even medium-mass and heavy nuclei and transitional nuclei. Even here, treating proton 

and neutron bosons explicitly, one risks to be involved with too many model parameters. 

Therefore, in the present description of the Zr isotopes, we make use of an approach in which 

we restrict the use of identical bosons. This act of truncation naturally implies that one has to 

replace the Hamiltonian by an effective IBM Hamiltonian describing the interactions amongst 

these identical bosons [26, 27, 28]. 
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     The calculations are in the shell-model scheme and of the empirical structure of near closed-

shell nuclei, in which 0
+
 and 2

+
 states lie considerably lower in energy than those of higher 

angular momentum. More specifically, this is characteristic feature of shell-model calculation of 

levels resulting from a short-range residual interaction in a two particle configuration of 

identical nucleons in the same orbit. Hence, it is reasonable to view the boson states as being 

constructed from the valence space only and to identify the bosons as correlated pairs of like 

nucleons. As such, the number N= ns + nd is finite and conserved in a given nucleons and is 

simply given by half the total number of valence nucleons. In the original version of the model, 

the IBM-1, with which this review deals, no distinction is made between protons and neutrons. 

Moreover, the valence number counting is always done relative to the nearest closed shells. 

Calculate the number of difference between protons or neutrons relative to the nearest closed 

shell divided by two then adding both protons and neutrons bosons to give us the total number 

of bosons. For example, the nucleus       
    has five valence proton bosons (relative to Z=50) 

and seven neutron bosons (relative to N=50), and so the boson number is N= 5+7=12, in this 

case protons are holes but neutrons are particles relative to the nearest close shell. And, in the 

      
   has five valence protons and five neutrons (relative to N=50) and in this case both 

protons and neutrons are holes. Similarly, both     
   

118 and     
   

74 have   N = Nπ + Nν=2+4=6 

bosons and are taken to have the same basis states in the model, even though in one case both 

protons and neutrons are holes, while in the other the protons are particles and the neutrons 

holes. Nevertheless, despite this simplification, the key ingredient remains, namely, the explicit 

incorporation in the formalism of the finite number of valence nucleons available. This feature 

leads to many of the characteristic differences between the predictions of the IBA and earlier 

phenomenological models of collective nuclear structure, and also tends the former a 
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microscopic aspect, in that a substantial part of the predicted structural changes across a major 

shell arise automatically from the changes in boson number [15,16,17].  

      As a peculiarity of the IBM, there exist special cases in which certain linear combinations of 

matrix elements of this interaction potential vanish. In these cases, the energies of the nuclear 

states and the configurations can be expressed in a closed algebraic form. These special cases 

are named "dynamic symmetries". They correspond to the well-known "limits" allocated to the 

vibration, the rotation etcetera of the whole nucleus. However, most nuclei have to be calculated 

by diagonalising the Hamilton matrix as is usual in quantum mechanics.  

    The IBM is not only in connection with the shell model but also with the collective model of 

the atomic nucleus of Bohr and Mottelson [19, 20]. In this model the deformation of the nuclear 

surface is represented by five parameters from which a Hamiltonian of a five dimensional 

oscillator results. It contains fivefold generating and annihilating operators for oscillator quanta. 

The operators of these bosons correspond to the operators of the d-shell in the IBM. 

     However, the handling of the collective model is laborious. Moreover, the number of bosons 

is unlimited and is not a good quantum number in contrast to the situation in the IBM. The 

special cases mentioned above are reproduced by some versions of geometric models but they 

are not joined together continuously. In the IBM these relations exist. An additional relationship 

between both models consists in the fact that the form of the Hamilton operator (after suitable 

transformations) is similar to the one of the IBM. The total spin of a boson is identical with its 

angular momentum i.e. one does not attribute an intrinsic spin to the bosons. Since the angular 

momenta of the bosons are even ( l = 0, 2 ) their parity is positive [21,22].  

     The application of the IBA to odd-mass nuclei, in which an odd nucleon is coupled to an 

IBA-1, description of the even-even core in the so-called interacting boson-fermion 
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approximation (IBFA) will also not be covered [23, 24]. And we can explain furthermore the 

interacting boson model in chapter two.  

1.6 Previous studies  

     Zirconium with atomic number 40 and atomic weight 91.224(2)u  has about thirty-three 

isotopes. Naturally occurring zirconium (Zr) is composed of four stable isotopes of which          

90, 91, 92, 94
Zr and 

96
Zr-isotope are nearly stable because they have a longer half-life than the age 

of the universe [29]. And 
96

Zr is a primordial nuclide that decays via double beta decay with an 

observed half-life of 2.0x10
19

 years. It can also undergo single beta decay which is not yet 

observed, but the theoretically predicted value of t1/2 is 2.4x10
20

 years [30]. The second most 

stable radioisotope is 
93

Zr which has a half-life of 1.53 million years [29, 30]. Twenty-seven 

other radioisotopes have been observed. All have half-lives, less than a day except for 
95

Zr 

(64.02 days), 
88

Zr (63.4 days), and 
89

Zr (78.41 hours). The primary decay mode is electron 

capture for isotopes lighter than 
92

Zr, and the primary mode for heavier isotopes in beta decay 

[31].  

     Zirconium is the heaviest element that can be formed from symmetric fusion from either 

45
Sc, or 

46
Ca producing 

90
Zr (after two beta-plus decays from 

90
Mo) and 

92
Zr respectively. All 

heavier elements are formed through asymmetric fusion or during the collapse of supernovae. 

As most of these are energy-absorbing processes, most nuclides of elements are heavier than it 

has been observed. The natural abundances of the Zirconium isotopes are 
90

Zr (51.45%), 
91

Zr 

(11.22%), 
92

Zr (17.15%), 
94

Zr (17.38%) and 
96

Zr (2.80%) [30,31]. The nuclear structure of these 

isotopes have been the subject of several experiments and theoretical investigations such as: 

 Studies of low-lying states in 
94

Zr excited with the inelastic neutron scattering reaction 

[32]. In this study, the low-lying structure of     
   has been studied with the (n,n' γ) 
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reaction to identify symmetric and MS excitation in this nucleus. And used the γ-ray 

Spectroscopy, Doppler-shift Attenuation Method (DSAM), and Reduced Transition 

Probabilities.  

 Zirconium isotopes are evidence for the heterogeneous distribution of s-process 

materials in the solar system [33]. In order to establish the occurrence and extent of such 

isotopic heterogeneities in Zr  and to investigate the origin of widespread heterogeneities 

in our solar system, new high-precision Zr isotope data are reported for a range of 

primitive and differentiated meteorites. The majority of the carbonaceous chondrites 

(CV, CM, CO, CK) display variable ɛ
96

Zr values (      relative to the earth. 

 Discovery of Deformed Magic Number for Zirconium Isotopes (Deformed Magic 

Number Causes a Large Nuclear Deformation)[34], with some key points: Region of 

large deformation observed for neutron-rich zirconium (Zr) isotopes, degree of 

deformation of zirconium isotopes reaches the maximum when neutron number is 64 

and equals the deformed magic number , and understanding changes in deformation may 

lead to understanding of the heavy element nucleosynthesis process in supernova 

explosions.  

 Hartree-Fock-Bogoliubov calculations in coordinate space using to study the properties 

of neutron-rich zirconium (
102,104

Zr) [35]. In particular, they calculate two-neutron 

separation energies, Quardapule moments, and rms-radii for proton and neutrons. And 

compare calculations with results from relativistic mean field theory and with available 

experimental data.   

 Microscopic study of nuclear structure for some Zr-isotopes using Skyrme-Hartree-

Fock-Method [36]. By using the Skyrme parameterizations : SkM,S1,S3,SkM, and SkM 

.the charge, proton, neutron and mass densities together with their associated root mean 
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square radii, neutron skin thickness, nuclear binding energies, and charge form factors 

have been calculated. Comparison between the theoretical and experimental results of 

charge form factors has likewise been performed.  

  Shape co-existence and parity doublet in Zr isotopes [37]. They studied the ground and 

excited states properties for Zr isotopes starting from proton to neutron drip-lines using 

the relativistic and non-relativistic mean field formalisms with BCS and Bogoliubov 

pairing. The celebrity ML3 and SLy4 parameter sets are used in the calculations, and 

found spherical ground and low-lying large deformed excited states in most of the 

isotopes. Several couples of Ω
π
 = 1/2

±
 parity doublets configurations are found, while 

analyzing the single-particle energy levels of the large deformed configurations.  

 The role of the intrinsic E2 matrix element between the two 0
+
 states in their 

configuration mixing in 
100

Zr [38]. Shape coexistence in 
100

Zr is a well-known 

phenomenon.  And this study can describe the very important value of B(E2) and 

lifetimes, with some work in the nuclear structure 
100

Zr.  

 Neutron-rich Zr and Mo isotopes were populated as fission fragments produced by the 

238
U( α, f ) fusion-fission reaction. Triaxiality and the aligned h11/2 neutron orbitals in 

neutron-rich Zr isotopes [39]. The level schemes of these nuclei have been extended 

beyond the first band crossing region, which can be ascribed to the h11/2 neutron pair 

alignment. The spin alignment and signature splitting for the vh11/2 orbitals in term of 

triaxiality is addressed for calculations used the cranked shell model.  

 Proton-neutron structure of 
92

Zr [40]. By using experimental data and shell model 

calculations show that both, single particle and collective degree of freedom are present 

in the low-lying levels of 
92

Zr. The second excited quadrupole state shows the signatures 

of the one-phonon mixed-symmetric 2
+
 state, whole calculations and data indicate an 
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almost pure neutron configuration for the   
  state, in contradiction with the F-spin 

symmetric limit and furthermore.  

 Measurements of prompt γ rays in coincidence with isotopically-identified fission 

fragments, produced in collisions of 
238

U on a 
9
Be target, at energy around the coulomb 

barrier are reported. The structure evolution of the neutron-rich zirconium isotopes is 

discussed. With using the interacting boson model with a global parameterization that 

includes triaxiality. Towards the high spin-isospin frontier using isotopically-identified 

fission fragments [41].  

 Using a schematic Interacting Boson Model (IBM) Hamiltonian to evaluate from 

spherical to deformed shapes along the chain of Zr isotopes from 
96

 Zr to
 104

Zr, 

describing at the same time the excitation energies as well as the two-neutron separation 

energies. This is theoretical description of energy spectra and two-neutron separation 

energies for neutron-rich zirconium isotopes [42]. 

 Shape transition and collective dynamics in 
94-100

Zr nuclei [43]. Quadrupole and 

octupole excitations in even 
94-100

Zr nuclei are studied within the fully microscopic 

generator coordinate method using a basis generated by the self-consistent Hartree-Fock 

and GCM method.  

 Interacting boson model-1 (IBM-1) used to calculations toward the neutron-rich nucleus 

106
Zr [44], to study the energy levels and electric quardupole transition probabilities and 

compared with experimental information. 

 Giant M1 states in Zr isotopes [45], by using the simple shell model. The newly 

observed M1 states in the ( p,p')  experiment on the Zr isotopes are considered the simple 

shell model. The calculation with a constant strength δ function interaction reproduces 
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the excitation energies and the slight increase of the M1 strength at small momentum 

transfer with mass number. 

 Microscopic study of oblate to prolate shape transition at higher spins in neutron-rich 
100-

104
Zr isotopes [46].  This study used the theoretical yrast spectra obtained in PSM 

framework compared with experimental data. 

 Anomaly in the nuclear charge radii of Zr isotopes [47], use the recent laser 

spectroscopic measurements, evaluate the nuclear root-mean-square charge radii on a 

chain of 
90

Zr isotopes. A prominent kink is observed at Zr and a sharp change is noticed 

between 
98

Zr and 
100

Zr, in the neutron rich region. 

 Neutron separation energies of Zr isotopes [48], Q-value are reported for (d,t) reactions 

on all the stable isotopes of zirconium. Used the theoretical evaluation of Wapstra and 

Gova (WG) method and then compared to the experimental data. 

 Deformation parameters and nuclear radius of zirconium isotopes [49], using the 

deformed shell model. In this search he studied the most important deformation 

parameters ( δ,β2), intrinsic quadrupole moments (Qo), root mean square of the nuclear 

radius and major with minor of ellipsoid axises (a,b) in addition to the difference 

between them. 

 Investigation of the neutron-rich zirconium (
92

Zr,
 94

Zr) [50], using interacting boson 

model. In this study calculated the low-lying levels structure and electric quadrupole 

transition by (IBM-1).and compared with experimental data. 

 A study of some nuclear properties of 
102

Zr such as energy levels and B(E2) transition 

[51], by using interacting boson model  IBM-1 and IBM-2. Compared with experimental 

data. 
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 A study of some nuclear properties of 
100

Zr such as energy levels and B(E2) transition 

[52], by using interacting boson model  IBM-1 and IBM-2. Compared with experimental 

data. 

 Gamow-Tellar strength distributions, β-decay half-lives, and β-delayed neutron emission 

are investigated in neutron–rich Zr isotopes with in a deformed quasiparticle random-

phase approximation briefly β-decay properties [53]. Using self-consistent Skyrme 

Hartree-Fock  mean field with correlations. 

 Charge radii and structural evolution in Zr isotopes including both even-even and odd-A 

nuclei [54], is studied within self-consistent Skyrme Hartree-Fock-Bogoliubov (HFB).   

 Study of spin rotation function for polarized proton incident on Zr isotopes [55]. In 

framework of first–order Brueckner theory employing Urbana V14, soft-core 

internucleon interaction along with relativistic mean field (RMF). 

 Application of realistic effective interactions to the structure of the Zr isotopes [56]. The 

Zr isotopes undergo a clear and smooth shape transition with increasing neutron number. 

The isotopes which are displayed span from pure spherical nuclei that can be described 

in terms of simple shell-model configurations. 

 Shell Model Calculations for Even Zirconium Isotopes [57], This contribution is a status 

report of the project aiming to describe the low-lying structure of the Zr isotopic chain 

by large scale shell model calculations. 

 

 Lifetime measurements of the first 2+states in 
104,106

Zr [58], Evolution of ground-state 

deformations. The first fast-timing measurements from nuclides produced via the in-

flight fission mechanism are reported. The lifetimes of the first 2
+
states in 

104,106
Zr nuclei 

have been measured via β-delayed γ-ray timing of stopped radioactive isotope beams 
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 Determination of the differences between the charge radii of zirconium [59], nuclei 

using laser-excited resonance fluorescence. The optical isotopic shifts of all the stable 

zirconium isotopes were determined for three atomic transitions of the 4d 
2
5s

2
 → 4d 

2
5s5p type by the method of laser-excited resonance fluorescence. The differences 

between the mean-square charge radii ∆< R
2
> were determined for zirconium ions. 

 

 A comparative study between semi-empirical oscillator strengthen parameterization and 

relativistic Hartree-Fock methods for computing the radiative parameters in Zr II 

spectrum [60]. 
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1.7 Aims of the work  

     In the present work, the calculations have been performed for 
80-108

Zr-isotopes (with Z = 40 

and 40 ≤ N ≤ 68) and to dedicate to study the following:  

 Energy levels, nuclear shape and electromagnetic properties will be calculated.  

 A detailed analysis of some spectroscopic observables, such as the ratio R4/2 of 

excitation energies of the first 2
+
 and 4

+
 levels or the amplitude of even-odd staggering 

in the γ band, The dynamical symmetries of even- even Zr- isotopes will be identified. 

 The electric properties of the considered nuclei such as the E2 transition rates and the 

quadrupole moment of the first excited states   
 (i.e. Q  

 ). 

 The magnetic properties of the considered nuclei such as the M1 transition rates, mixing 

ratios and the magnetic dipole moments of the first excited states   
  (i.e. μ  

 ). 

1.8 The outline  

          The outline of this thesis includes the following: the main characteristics of the theory of 

the interacting boson model of the IBM-1 and IBM-2 models, which are presented in chapter 

two. A brief description of the computer programs used in this work for the calculation of the 

energy and electromagnetic properties of IBM-1 and IBM-2 models is given in chapter three. 

The results and discussion of our theoretical calculation are presented in chapter four. The 

summary and the conclusions which are drawn by the present work and the suggested future 

works are presented in chapter five. 
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Chapter Two 

The Interacting Boson Models (IBM) 

     A nuclear model was proposed by Arima and Iachello, called Interacting Boson Model 

(IBM) to study the structure and properties of even– even nuclei and describing collective 

excitations in atomic nuclei. One of the advantages of the model is its use of the symmetries of 

the boson operators introduced in the model, which allows for analytic expressions of the states 

and expectation values for three different ideal limits of nuclei. In the IBM-1, the number of 

bosons is given by the number of pairs of protons and pairs of neutrons outside of closed shells. 

No distinction is made between proton type and neutron type bosons, but in IBM-2, distinction 

is made between proton type and neutron type bosons [16, 17, 18, 19]. 

2.1 IBM-1 Model 

    IBM-1 is (s-d) bosons system, which has six components that can be analogues to six-

dimension space. In the view of group theory, this will lead to a description in terms of U(6). In 

the IBM-1, the nucleon or hole pairs must be the same type of nucleon. Meaning pairs 

consisting of a proton and neutron are not included. The IBM-1 is applicable only to even-even 

nuclei. The nuclear states are represented in the framework of second quantization. The boson 

creation operators are given by (s
†
 ) and( d

†
μ)  and the boson annihilation operators by ( s) and    

(dμ ) where (μ = −2,−1, 0, 1, 2)  satisfy the following commutation relations [63]. 

 [s, s] = [s
†
, s

†
] = 0                                                                                              (2-1) 

[s, dμ] = [s
†
, d] = [s, d

†
] = [s

†
, d

†
] = 0              (2-2) 

[dμ, dμ′ ] = [d
†
μ, d

†
μ′ ] = 0                      (2-3) 

[dμ, dμ′ ] = δμμ′                                    (2-4) 
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2.1.1 The Hamiltonian  

     The Hamiltonian, which connects the basis states, is written in the language of second 

quantization and, as such, can only involve combinations of the operators s, s
†
 , d , d

†
 . The 

specific combinations that appear are defined by the restriction limiting the complexity to a 

maximum of two-body interactions and by the need to conserve the total number of bosons. The 

former constraint implies that terms containing, for example, d
†
d
†
 or s

†
s
†
 are allowed, while 

combinations such as d
†
d
†
d
†
 are not. The latter demands that every creation operator be 

accompanied by an annihilation operator and vice versa. Such Hamiltonian operator ( ̂ ) 

contains one and two body operators  

  ̂ = ɛs s
†  ̃   +  ɛd  ∑   

†
  ̃ + V                        (2-5) 

Where ɛs , ɛd are s and d single – boson energies, V is  boson-boson interaction potential, 

s
†   ̃    are creation and annihilation operators for the state (s) , (s-boson), and  d

†
(  ̃  are 

creation and annihilation operators for the state(d) , (d-boson).  These rules result in the 

following form for the most general IBA-1 Hamiltonian [64, 65, 66, 67, 68].  

 ̂ = E0 + ɛs
'
 (s†   ̃    +  ɛd

'
    †   ̃) + ∑

 

 
√            CL   [  [ †   †] [ ̃   ̃]L   ]0 

+   ̃2/√ [  [ †   †]2  [ ̃  ̃]2 + [ †  s†]2   [ †   ̃]
2  ]0

  

+  ̃0/2 [  [ †   †]0  [ ̃   ̃]0 + [s†  s†]0 [  ̃   ̃]0   ]0 

+u2  [ [ †  s†]2  [ ̃  ̃]2 ]0 + u0/2 [ [s†  s†]0  [ ̃   ̃]0]0                                                    (2-6) 

where the coefficient in front of each term has been chosen according to the definitions of 

Arima and Iachello [17]. The operator  ̃ is defined by 
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  ̃ m = (-1)
m
d-m                                                                                                                           (2-7)  

so that it maintains the character of a spherical tensor operator of rank two. This form of 

Hamiltonian is the most direct form which includes all allowed one-body and two-body 

interactions in the second quantization formalism. In this Hamiltonian EO is the core energy; εs
'
 

and εd
'
 are the binding energies of the s and d boson (or we can say ɛs

'
 and ɛd

'
 are single boson 

energies for s-and d-boson respectively); the operators (  s) and      ̃   count the number of s 

and d bosons, respectively. Where ns and nd are number operators, the CL, V0, V2, u2 and u0 are 

corresponding interaction parameters (The three constants C0 C2 and C4 specify the interaction 

between the d-bosons and similarly u0 specifies the interaction strength among the s-bosons. 

The interaction of the s-bosons with the d-bosons is given by V2 , V0 and u2). It is apparent that 

the full Hamiltonian of Eq. (2.6) involves two single-boson energies (multiplying the one body 

terms  (ɛs
'
, ɛd

'
)), and seven boson-boson interaction strengths (multiplying the two-body terms 

(C0 , C2, C4, V0, V2, u2, u0)). 

     It can be shown that for the calculation of excitation energies only 6 of these 10 parameters 

are linearly independent. The effect of εs
'
 for example, can be absorbed into εd

'
 and Eo by making 

use of the total boson number conservation, and the total number of boson is 

 ̂= ns + nd                                                                                                                                                                           (2-8) 

Also we can written as  

εs
'
 (  s) + εd

'
 (    ̃  = εs

'
 ns + εd

'
 nd = εs

'  ̂ + (εd
'
- εs

'
) nd = ε

'
s ̂ + εd nd                                       (2-9) 

Where εd=  (εd
'
- εs

'
) is the difference in binding energy between the s-and the d-boson. Since ε

'
s ̂ 

is a constant for a given nucleus, its contribution can be absorbed in Eo . Similarly the 

contribution of uo and u2 can be absorbed in Eo , εd and CL using  
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[(    )
(2) 

 ( ̃ )
(2) ] 

   
= (  s  

   
 (    ̃  

   
 = 

 

√ 
( ̂nd - nd nd) 

 = 
 

√ 
{ ( ̂    nd -  ∑ √             [  ( †  †)L   ̃ ̃ L   ] 

   
 }                                                     (2-10) 

, and  

[(     (s s) ] 
   

= ns(ns 1) = ( ̂   nd – 1)(  ̂   nd) 

( ̂      ̂   2( ̂     nd + ∑ √            [  ( †  †)L   ̃ ̃ L   ] 
   

                    (2-11) 

     For a given nucleus Eo is a constant affecting only the binding energy. The calculation of the 

matrix elements of this general Hamiltonian can be carried out in a straight forward way, using 

the coefficients of fractional parentage (cfp) [20]. From the above equations, N is a fixed for a 

given nucleus and only the excitation energy are considered, then only one of the one body 

terms and five of the two body terms are independent, and then the number is further reduced to 

six parameters. And we can express the number of s-boson and d-boson in terms of creation and 

annihilation operators, 

 The number of s-boson is  

ns = s†  ̃                                                                                                                                                     (2-12) 

The number of d-boson is  

nd =     ̃                                                                                                                                                  (2-13) 

the most commonly used form of the IBA Hamiltonian, and the one in which it is the easiest to 

understand the role of each term in determining the final structure of the nucleus under 

consideration, is the so-called multipole expansion. In this parametrization the various boson-

boson interactions are grouped so that the Hamiltonian takes the form [15, 16, 17, 18, 19, 20]. 

 ̂ = ɛ (nd) + ao ( ̂.  ̂) + a1( ̂.  ̂)  + a2( ̂.  ̂)  + a3( ̂3.  ̂3) + a4( ̂4.  ̂4)                                   (2-14) 
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Where ɛ, ao, a1, a2 , a3 and a4 are the model parameters, P, L, Q, T3 and  T4 are the pairing, 

angular momentum, quadrupole, octopole and hexadecapole operators respectively. nd is the      

d-boson number operator, and all operators in the Hamiltonian are the following 

[64,65,66,67,68] 

Pairing operator is 

 ̂ = 
 

 
 [(   ̃  ̃)    ̃  ̃  ] = 

 

 
 ( ̃2     ̃2)                                                                                   (2-15) 

Tl = [ †   ̃]
l 
    l=0,1,2,3,4,…                                                                                               (2-16) 

Angular momentum operator is  

 ̂ = √   [ †   ̃]
1
 = √   ̂1

                                       
(2-17) 

Quadrupole moment operator is  

 ̂ = [ †   ̃ + s†   ̃]2    
√ 

 
 [ †   ̃]

2   
             

    = [ †   ̃ + s†   ̃]2    
√ 

 
 T2                                                                                             (2-18) 

Octapole operator is   

 ̂3 = [ †   ̃]
3   

                                                                                                                       (2-19) 

Hexadecapole operator is  

 ̂4 = [ †   ̃]
4   

                                                                                                                       (2-20) 

Number of d-boson operator is  

 ̂d=  √  ̂0                         (2-21) 

     In this form there appear terms that have, at least superficially, a more physical connotation, 

specifically an angular momentum operator, a quadrupole operator, octupole and hexadecapole 

terms, as well as the so-called pairing operator P. Note, however, that these are operators acting 

on boson states, not in the fermion space. It is in this form, therefore, that we shall usually 
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consider the application of the IBA-1 Hamiltonian to the set of basis states described earlier. We 

note that the definition of Q above uses a specific SU(3) choice of numerical coefficients. 

      The Hamiltonian also can be written in terms of Casimir operator [17].  

   ̂ = ɛ  ̂1U(5) +α  ̂2U(5)  +β  ̂2O(5) +γ  ̂2O(3)  + δ ̂2SU(3) + η ̂O(6)                                                (2-22) 

Where ɛ, α, β, γ, δ , and  η  are parameters,  ̂1U(5)  is linear Casimir operator and  ̂2U(5)  ,  ̂2O(5) , 

 ̂2O(3)  ,  ̂2SU(3) ,and   ̂O(6)   are quadratic Casimir operator. 

As will become evident, an important concept is that of a Casimir operator of a group. This is an 

operator that commutes with all of the generators of the group. Such operators can be composed 

of linear or higher-order combinations of the generators and are appropriately called linear, 

quadratic, . . . , Casimir operators. 

For example, in the case of O(3), the operator 

     
    

    
         

                                                                                                (2-23) 

 Commutes with    ,            and is therefore the (quadratic) Casimir operator of O(3).  

2.1.2 Electromagnetic transition operator   

   Many observable quantities can be calculated in the framework of IBM by evaluating the 

matrix elements of the appropriate operators. The construction of operators for the various 

nuclear structure observables of interest is again straightforward, given the fact that they must 

be built from the basic elements s,   ,  ̃  or    . In the vast majority of applications to date, only 

the lowest-order contributions to these operators have been included [64, 65, 66, 67, 68] 

    The electric monopole transition operator is 

T(E0) = α  ̂s+
 

√ 
 ̂d                     (2-24) 

The T(E0) operator can be rewritten as  

T(E0) = α( ̂    ̂d) + 
 

√ 
 ̂d   = α( ̂ + 

 

√ 
 ̂d         (2-25) 
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Where α and   are the coefficient of the various terms in the operator. The first term in T(E0) 

vanishes, since N is conserved and therefore cannot induce transitions between the orthogonal 

basis states. Hence E0 transitions are simply proportional to the matrix elements of the d-boson 

number operator and thus rather directly sample the wave function structure, can be written as  

  
   =     ̂  .        

      The most important electromagnetic features are the E2 transitions. The B(E2) values were 

calculated by using the E2 operator. The E2 transition operator (electric quadrupole transition 

operator) must be a Hermitian tensor of rank two and therefore the number of bosons must be 

conserved. Since with these constraints the general E2 operator can be written as 

T(E2) =     [( †  ̃ + s†  ̃) + χ  †  ̃)(2)
] =   Q                    (2-26) 

Where    plays the role of the effective boson charge. The parameter χ determines the relative 

importance of the two terms. The E2 operator, which is identical in form to the Q operator in the 

Hamiltonian, consists of one piece that changes nd by unity and another that leaves nd 

unchanged, the ratio of the two terms being given by the parameter χ.  

Hexadecupole transition operator is a tensor of rank four (E4) and can be written as 

  
   = e4 [ †   ̃] 

                                                                                                        (2-27) 

the momopole operator M
(0)

 can be constructed in a similar manner [19] 

M
(0)

 = c + α0 (    
(0)

 + β0 (   ̃)
(0)

                 (2-28) 

Where c is a constant, the monopole operator is used to calculate properties such as E0 

transitions and mean square radii.  

The magnetic dipole transition operator are [17,18,19]  

T(M1)=   ̂=   [ †  ̃] 
                                                                                                     (2-29) 
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In contrast, the M l operator is proportional to the total angular momentum and therefore gives 

rise to no transitions. To investigate M1 transitions in the IBA-1 framework, it has therefore 

been necessary to introduce second-order terms [17] In this case, one has 

T(M1) = (  + A  ̂ )  ̂ + B  ̂   ̂ + C (Q ̂)
(1) 

         (2-30) 

Then the magnetic octupole transition operator is a tensor to rank three  

  
   = e3[ †   ̃] 

                                                                                                        (2-31) 

     Electromagnetic transition rates can be calculated in the usual way. By taking the reduced 

matrix element of the corresponding transition operators between initial and final states as 

〈  ‖ 
 ‖  〉. 

     The relation could hold for electric and magnetic transition probability, B(El) and B(Ml) 

respectively as [17] 

B(l; Li →Lf) = 
 

      
 |〈  ‖ 

 ‖  〉|
2      

                                                                               (2-32) 

Where: 

 Li : Angular momentum of the initial state. 

Lf : Angular momentum of the final state. 

   : Transition operator. 

     Turning now to other properties, the operator for the mean-square radius is, of course, 

closely related to that for the E0 transitions and is given by 

 r 
2  

= 〈  〉  + a  ̂  + b ̂                                     (2-33) 

Where the first term represent the mean-square radius of the closed-shell core. a and b are 

constants.  
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2.1.3 Dynamical symmetries  

    As we have mentioned before, it is Hamiltonian exactly for certain sets of possible to solve 

the IBM parameters using group theoretical methods. In the following the relevant symmetries 

are discussed briefly. The s(L=0) and d(L=2)  bosons of the IBM-1 have six components 

(substates ) and therefore define a six-dimensional space. This leads to a description in terms of 

the unitary group in six dimensions, U(6). The Hamiltonian (2-6) can be regarded as a general 

rotation in a six dimensional space. The six dimensions are formed by the s-boson and the five 

components of the d-boson, d2 d1, d0 d-1, d-2.  It is a unitary operator because the norm (i.e. the 

number of bosons) of the vectors is left invariant. This means that the general Hamiltonian can 

be discussed in terms of the group U(6), of all unitary transformations in six dimensions. 

     As a consequence, many of the characteristic properties of the IBM can be derived by group-

theoretical methods and expressed analytically. When we consider the different reductions of 

U(6), three dynamical symmetries emerge [17,18,19] known as U(5) ,SU(3) and O(6), which are 

related to the geometrical idea of the spherical vibrator ,deformed rotor and symmetric (γ-soft) 

deformed, respectively[21]. According to the value of the (ɛ) and (V) in Eq.(2-5) that there are 

three limits in IBM-1: at the first limit ɛ   V this state named by vibration dynamical symmetry 

described by subgroup U(5), at second limit when V   ɛ this state named by rotational 

dynamical symmetry described by subgroup SU(3), and at third limit when  V   ɛ  then state 

named by γ-unstable symmetry described by subgroup O(6) [17,18,19,20,21]. 

The number of generator in term of unitary group U(n) [16] is  

Number of generator of U(n) =  n
2 

             (2-34) 

Thus we have 36 generators of the U(6) group that can be written down explicitly [16]  
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GU(6) = [s†  ̃] 
   

, [  † ̃] 
   

,[  † ̃] 
   

,[  † ̃] 
   

,[  † ̃] 
   

,[  † ̃] 
   

,[  † ̃] 
   

,[  † ̃] 
   

     (2-35) 

               1              1                 3              5              7              9              5              5    =   36 

Since the generators are dependent on the angular momentum and the number of generator in 

term of angular momentum is (2L+1). In special cases Hamiltonian can be expressed in terms of 

the generators of a subgroup of U(6). The generators of a subgroup are a subset of these 36 

U(6), generators, that c1ose under commutation. Under the restriction that each group contains 

the angular momentum group, O(3), as a subgroup, three group chains can be assigned 

[16,17,18,19,20,21]. 

I. U(6) ⊃ U(5) ⊃ O(5) ⊃ O(3) 

II. U(6) ⊃ SU(3) ⊃ O(3)                                                                                                 (2-36)                     

III. U(6) ⊃ O(6) ⊃ O(5) ⊃ O(3) 

These chains will be discussed more extensively in the following sections. 

     If the Hamiltonian can be written as the sum of the Casimir operators of one of the group 

chains (2-36) one says that it has a dynamical symmetry. Whenever a dynamical symmetry 

occurs the representations of a group are split in energy but not admixed with other 

representations. The eigenstates can then be classified according to the group reduction. In these 

cases there exists an analytic expression for the eigenvalues.  

     These analytic solutions arise only for certain values of the parameters in the Hamiltonian   

(2-6). We shall refer to them as limiting cases and label them by the first subgroup in the chain. 

The linear and quadratic Casimir operators of U(6) and its various subgroups can be written in 

terms of the operators from Eq. (2.15) to( 2-21) as 
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C1U(6) =  ̂                    (2-37) 

C2U(6) =  ̂ ( ̂                                                                                                                      (2-38) 

C1U(5) =  ̂          (2- 39) 

C2U(5) =  ̂  ( ̂                          (2- 40) 

C2SU(3) = 
 

 
   + 

 

 
 ̂    (2- 41) 

C2O(6) = 2   ̂ ( ̂+4) – 8 P
† 

P     (2- 42) 

C2O(5)  = 
 

 
 ̂  + 4  

               (2- 43) 

C2O(3) =    ̂         (2- 44) 

     It should be commented that since these Casimir operators are defined by a set of vanishing 

commutators, any multiplicative form is also a generator. The definitions above are 

conventional and convenient ones. It now remains to identify the representation labels for each 

chain, and hence the quantum numbers of the basis states, as well as the physical structure for 

each limiting symmetry. In doing so, we shall from time to time make correspondences with 

various geometrical models. 

2.1.3.1 Group chain I: U(5) symmetry 

     This symmetry group described the vibrational nuclei which have spherical shape, and it has 

25 numbers of generator in term of unitary group with used the eq.(2-34). We can write it as 

[16] 

GU(5) = [  † ̃] 
   

,[  † ̃] 
   

,[  † ̃] 
   

,[  † ̃] 
   

,[  † ̃] 
   

                                    (2-45) 

                  1              3               5             7               9   =   25  
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     These operators close under the algebra U(5). The quantum number with which the 

representations of this group are labeled is nd.  

     The set GU(5) contains a subset of 10 operators that close under commutation, the generators 

of the orthogonal algebra in five dimensions O(5) 

Number of generator O(n) = 
 

 
            (2-46)  

and can be written as  

GO(5) =  [  † ̃] 
   

 , [  † ̃] 
   

                                                                  (2-47) 

                  3                 7   =   10      

The representations of O(5) are labeled by v, the boson seniority, the eigenvalues of the 

quadratric Casimir operator of O(5), 

CO(5) = 
 

 
 (  † ̃)(1)

. (  † ̃)(1) 
+ 

 

 
 (  † ̃)(3)

. (  † ̃)(3)
         (2-48) 

Are given by  
 

 
        

The O(5) group contains O(3), the angular momentum, as subgroup or rotational algebra, it has 

three generators by using (2-46) as shown below 

GO(3) =[  † ̃] 
   

                         (2- 49)   

               3 

The eigenvalues of the well-known Casimir operator of O(3),  

 ̂  = 10 ( † ̃ (1) . ( † ̃ (1)                                         (2-50) 

Are L(L+1) , where L, the angular momentum, labels the different O(3) multiplets. In an O(3) 

multiplet the levels are distinguished by M, the projection of L on the Z-axis. 

     Finally the single component generate of algebra O(2) of rotation around z-axis its 

component of O(3) by use eq.(2-46) is given by  
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GO(2) = [ † ̃]
 
                                                             (2-51)

 

                1 

This yields a possible chain of algebras [ 25,26,27,28] 

U(6) ⊃ U(5) ⊃ O(5) ⊃ O(3) ⊃ O(2)                        

[N]       [nd]       v, n∆       L        ML 

This chain described by above six quantum numbers [16,17], and the eigenvectors can be 

labeled with the quantum numbers of the various groups, which can be written as  

    ⟩  =    [N] [nd] v, n∆ L   ⟩                                   (2-52) 

  Where [21] 

nd = 0,1,……………N                                                                                                            (2-53)           

N: is total number of bosons  

v : is the d-boson seniority: represents the number of d-boson which are not coupled pairwise to 

angular momentum zero 

L: angular momentum  

ML: component of angular momentum and  

v =  nd , nd -2 ……………1 or 0 ; nd  = odd or even                                                                  (2-54) 

     Another quantum number (nβ) which gives the number of d-boson pairs [17] which are 

coupled pairwise to angular momentum zero.  
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v =  nd -2 nβ  → nβ = (nd – v)   2                                                                                              (2-55) 

nβ = 0 , 1 …. nd 2  or  (nd – 1)   2    ;  nd = even or odd                                                          (2-56) 

The step from O(5) to O(3)  is not fully decomposable then an extra quantum number required 

which is n∆ as can be seen, an additional quantum number n∆  has been introduced to describe 

the reduction from O(5) to O(3). This requirement indicates that within the basis states | Nnd v   

which describe the representations of O(5) there can be more than one state with a particular 

value of L [21]. 

n∆:  describes the number of d-boson triplets which are coupled to zero angular momentum. 

Then (nd) partition will be as  

nd = 2 nβ + 3 n∆ + λ                                                                                                                  (2-57) 

The value of (L) contained in each irrep nd  of U(5)  are given by  

L = λ , λ+1, λ+2 …….. 2 λ -2 , 2 λ                                                                                         (2-58) 

The value of ML allowed for a given value of L is  

-L   ML   +L                                                                   

We can classify scheme for the group chain I to show how it depended on the quantum numbers 

that are shown in table (2-1) [16]. 

 

 

 

 

 

 

 



Chapter Two                                                                                     The Interacting Boson Models (IBM)  

37 | P a g e  
 

Table (2-1) : Classification scheme for the group chain I  

U(6) U(5) O(5) O(3) 

N nd v n∆ L 

0 0 0 0 0 

1 0 0 0 0 

 1 1 0 2 

2 0 0 0 0 

 1 1 0 2 

 2 2 0 4,2 

  0 0 0 

3 0 0 0 0 

 1 1 0 2 

 2 2 0 4,2 

  0 0 0 

 3 3 0 6,4,3 

   1 0 

  1 0 2 

4 0 0 0 0 

 1 1 0 2 

 2 2 0 4,2 

  0 0 0 

 3 3 0 6,4,3 

   1 0 

  1 0 2 

 4 4 0 8,6,5,4 

   1 2 

  2 0 4,2 

  0 0 0 

 

The Hamiltonian for chain I can be written down in term of the Casimir operator as follows 

 ̂I = α  ̂1U(5) +  ̂2U(5)  + γ  ̂2O(5) + δ  ̂2O(3)                                                                               (2-59) 

Eigenvalues for this chain from the Hamiltonian in term of the Casimir operator eq.(2-59)  is 

given by [17] 

E = α nd + β nd (nd+4)  + 2 γ v (v+3) + 2 δ L(L+1)                                                                 (2-60) 
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Where each term in Eq. (2-60) is the eigenvalue of the corresponding Casimir operator of Eq.(2-

59). While the Hamiltonian In terms of the operators of the multipole expansion, HI reduces to 

[61,62,63]. 

 ̂I = ɛ (nd) + a1( ̂.  ̂)  + a3( ̂3.  ̂3) + a4( ̂4.  ̂4)                                                                      (2-61) 
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Figure (2-1): low-lying levels of the U(5)symmetry of the IBM in the harmonic limit.      

The U(5) limit hasn’t  E0 transition since the E0 operator is proportional to  ̂d  

⟨       ⟩    ̂  
⟨   ⟩ = 0      (if  i  j )                                                         (2-62) 

    The general form for quadrupole electric transition operators for the U(5) chain T(E2) is 

given from equ.(2-26) has a term that changes nd by ±1 and a term with ∆ nd  = 0. Since the 

selection rule is   

nd = 0 ,  1                                                                                                                               (2-63) 

     If the operator is chosen to be a generator of the U(5) symmetry, then only the latter term 

would be used. However, the predicted E2 matrix elements would then be 0 between states 

differing by 1 or more d bosons, while they would yield nonzero diagonal contributions 

(quadrupole moments). This situation is essentially the inverse of that expected and observed for 

vibrational nuclei, and hence it has been customary to use the first term of the El operator in the 

U(5) limit, which produces results very similar to those of the geometric vibrational picture. 

U(5) 

(nd ,nβ ,n∆) 
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The general result B(E2) values [64] 

∑     (E2;L nd+1   L' ,  nd) =   
  (nd +1) (N   nd )                                                                     (2-64) 

Where    is a boson effective charge. The sum on the left side of Eq. (2.64) accounts for the 

distribution of strength from a given initial state if the angular momentum selection rules allow 

decay to more than one level of the next lower multiplet. This sum contains more than one term 

only for decay of nd   3 states. 

Equation (2.64) gives, for the transitions between the lowest levels, 

B(E2;   
 →  

 ) =   
   N                                                                                                           (2-65) 

B(E2;   
 →  

 ) = 2   
    (N-1)                                                                                                 (2-66) 

The ratio between these two transition probabilities: 

R= 
 (      

    
 )

 (      
    

 )
 = 2 

     

 
        2                                                                                            (2-67)    

Since U(5) is usually relevant only near closed shells, where N is rather small, differences from 

the geometric model can thus be significant.  

and for N→      then R =2 [17] 

The electric quadrupole moment for the ground state is given by [17] 

QL = β2 √
   

 
 (

√ 

√  
)L                                                                                                                (2-68) 

Where  

β2 = 
    

√ 
 α2 , and it changes from 0 to 

 √ 

 
 in this chain                                                          (2-69) 
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A typical spectrum obtained from this Hamiltonian is shown in figure (2-2) 

 

 

Figure (2-2): A typical spectrum with U(5) symmetry and N=6.in parentheses the quantum 

numbers (v) and (nd) appear [17,18,19,20,21].  

 

2.1.3.2 Group chain II: SU(3) symmetry  

    This symmetry group is used to describe the rotational spectra of nuclei, and it has 8 numbers 

of generator in term of special unitary group which used the following rule in the generator 

Number of generator of SU(n) = n
2
 – 1                                   (2-70) 

The generators are  

GSU(3)= [  † ̃] 
   

, [( †  ̃ + s†  ̃)] 
   

 

 
√  [  † ̃] 

   
                                                                   (2-71) 

                  3                                 5                            =   8  

These generators can be rewritten as  

 

v, n∆ 

E
 (

M
eV

) 
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GSU(3)= {   
    ,   

   
}     (2-72)     

Where L and Q are angular momentum and  quardupole operators respectively from equ. (2-17) 

and equ.(2-18).  

     This group has again O(3) as a subgroup and the generator is (2-49) with 3 number of 

generator and the itself component O(2) from equ.(2-51) has only one number of generator. In 

the definition of the quadrupole operator in principle also  
 

 
√   is allowed instead of  

 

 
√ . 

This sign change makes no difference in the calculation of excitation energies, it will only 

change the sign of the quadrupole moment 

This yields a possible chain of algebras [ 17,18,19,20,21] 

U(6) ⊃ SU(3) ⊃ O(3) ⊃ O(2)  

[N]      (λ,μ) K      L         ML  

The labels needed to classify the states in this chain are [16]. The U(6) group is  

U(6) = [N,0,0,0,0,0]   [N]                                                                                                      (2-73) 

 Because U(6) known by the total number of boson (N). 

     In the SU(3) scheme the states can be labeled as [10] 

    ⟩ =   [ ]             ⟩                                          (2-74) 

     The group of SU(3) are characterized by two quantum numbers (λ,μ) the value of each (λ,μ) 

contained in each N are given by [16]  
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[N]= (λ,μ) = (2N,0)   (2N-4,2) (2N-8,4) …          
       

             
     

 

                  (2N-6,0) (2N-10,2) …            
       

                 
       

                                                (2-75) 

                  (2N-12,0) (2N-16,2)  …          
       

              
       

    

                  ………  

The step from SU(3) to O(3) is not fully decomposable, and then an extra quantum number is 

required which is denoted by( K). The corresponding number is called K. The values of L 

contained in each representation (λ,μ) are then given by the following algorithm [17]:  

L= K ,K+1,K+2 …. K+ max (λ,μ)                                                                                          (2-76) 

Where  

K =integer = min(λ,μ) ,min(λ,μ)-2 …. 1 or 0;    {min(λ,μ) =odd or even}                            (2-77) 

With the expansion of K = 0 for which  

L=max(λ,μ), max(λ,μ)-2…. 1 or 0;                    { max(λ,μ)=odd or even}                             (2-78) 

and O(3) ,O(2) they are described by quantum number L and ML respectively. 

We can classify scheme for the group chain II to show how it depended on the quantum 

numbers shown in the table (2-2) [16].  
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Table (2-2): Classification scheme for the group chain II 

U(6) SU(3) O(3) 

N (λ,μ)  ̃ L 

0 (0,0) 0 0 

1 (2,0) 0 2,0 

2 (4,0) 0 4,2,0 

 (0,2) 0 2,0 

3 (6,0) 0 6,4,2,0 

 (2,2) 0 4,2,0 

  2 3,2 

 (0,0) 0 0 

4 (8,0) 0 8,6,4,2,0 

 (4,2) 0 6,4,2,0 

  2 5,4,3,2 

 (0,4) 0 4,2,0 

 (2,0) 0 2,0 

 

 

The Hamiltonian is just a linear combination of the Casimir operators of SU(3) and O(3) and 

can be written [16,17,18,19,20,21,22] 

 ̂II = a1  ̂
2 

 + a2  ̂
2                                                                                                                                              

                   (2-79) 

Comparison with Eq. (2.42) and Eq.(2-45) shows that this form is equivalent to 

 ̂II = 
 

 
 a2 C2SU(3)  + [ 

 

 
   

 

  
  ] C2O(3)              (2-80) 

The eigenvalue of the SU(3) Casimir operator as denned in Eq. (2.42) and Eq.(2-45) is given by 

        
 =  

 

 
  (λ

2
 + 2  

+  + 3 + 3  )                            (2-81) 

And thus the resulting eigenvalue expression is [16]  

E =
  

 
  (λ

2
 + 2  

+  + 3 + 3  ) + (a1 - 
   

 
) L(L+1)                                                                 (2-82)   

a1 and a2 can be calculated by [17]  

a1 = 
   

 

 
 + 

 

 
 a2              (2-83) 

a2 = - 
 [   

       
 ]

       
                                                                                                                      (2-84) 
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If the specific form of the quadrupole operator [16,17,18] 

  ̂ = [ †  ̃ + s†  ̃]    
√ 

 
 [ †  ̃]

2   
    

Then                                                  

T (E2) = α2 ̂                                             (2-85) 

Where α2 is the effective charge of E2 or before denoted by    , β =   
√ 

 
 α2  , and selection rules 

for this symmetry are[16,17]   

  ∆λ=0                                                                                                                                      (2-86) 

 ∆μ=0 

Since the operator (2-85) is a generator of the SU(3) group all quadrupole transitions between 

different multiplets are forbidden. 

B(E2) is given by [69,70] 

B(E2;(2N,0):L+2→L) =   
  

 

 
[

          

            
] (2N-L)(2N+L+3)                                               (2-87) 

Here the factor (2N-L)(2N+L+3), which is not present in the equivalent expression for the rigid 

rotor, has its origin in the fact that the number of bosons (N) is conserved. This factor gives rise 

to the phenomenon that beyond a critical spin value the g.s. band B(E2) values actually decrease 

with increasing spin. 

For L=0 

B(E2;   
 →   

 ) = 
  
 

 
 N(2N+3)           (2-88) 

and for L=2 

B(E2;   
 →   

 ) =   
  

 

 
 (N-1)(2N+5)                                                                             (2-89) 

The ratio between eq. (2-59) and (2-60) can be written as [62,63,64,65]  

R = B(E2;   
 →   

 )  B(E2;   
 →   

 ) = 
  

 
 [

           

       
]                                                     (2-90) 
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If  N→    

R = 
  

 
                                                                                                                 (2-91) 

The electric quadrupole moment for states is given by [61,62,63] 

QL = - e2 √
   

  
 

 

      
(4N+3)                                                                                                   (2-92) 

A typical spectrum obtained from this Hamiltonian is shown in figure (2-3) 

                     (λ,μ) 

 

 

Figure (2-3): A typical spectrum with SU(3) symmetry and N=6.in parentheses the 

quantum numbers (λ) and (μ) appear [21]. 

 

2.1.3.3 Group Chain III: O(6) symmetry  

     The third symmetry in this model is known as (γ- unstable) symmetry, and it has 15 numbers 

of generator in term of orthogonal group which used this following rule  

Number of generator of O(n) = 
 

 
n(n-1)              (2-93) 

The generators are 

E
 (

M
eV

) 
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GO(6) = [  † ̃] 
   

, [  † ̃] 
   

, [( †  ̃ + s†  ̃)] 
   

                    (2-94) 

                3                 7                     5            =    15 

    We see immediately that also the generators of O(5), eq. (2.47) and those of O( 3 ) , eq. (2. 

49) are contained in this set, and its component O(2) from eq.(2-51) has only one number of 

generator.   

This yields a possible chain of algebras [66,67,68,69,70,71,72,73,74,75] 

U(6) ⊃ O(6) ⊃ O(5) ⊃ O(3) ⊃ O(2)  

[N]          ζ     ( τ , v∆)      L        ML 

Following the group reduction O(6) the states are labeled as [20] 

    ⟩ =  [ ] ζ ( τ , v∆)  L   ⟩                (2-95) 

O(6) in this chain described by ζ which is a number of bosons which are not coupled to zero 

angular momentum, and take [16,17,18,19,20] 

ζ = N, N-2 ….0 or 1 ; for N=even or odd                               (2-96) 

The selection rule for seniority is 

0     v                                                                           (2-97) 

Also O(5) defined by quantum number (τ )  

τ = ζ, ζ-1 …. 1,0                                                                                                                     (2-98) 

     The step from O(5) to O(3) is not fully decomposable then a new quantum number found 

(v∆), which described the number of triplet bosons which are coupled to zero angular 

momentum. 
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The partition of τ is  

τ = 3 v∆ + λ                                                                                                                              (2-99) 

Where  

 v∆= 0,1,2 ….                 (2-100) 

Then L takes  

L = 2λ, 2λ-2 ….. λ+1, λ, ……..                 (2-101) 

Or we can say 

                         (2-102) 

     We can classify scheme for the group chain III to show how it depended on the quantum 

numbers shown in the table (2-3) [16].   

Table (2-3): Classification scheme for the group chain III 

U(6) O(6) O(5) O(3) 

N σ τ v∆ L 

0 0 0 0 0 

1 1 1 0 2 

  0 0 0 

2 2 2 0 4,2 

  1 0 2 

  0 0 0 

 0 0 0 0 

3 3 3 0 6,4,3 

   1 0 

  2 0 4,2 

  1 0 2 

  0 0 0 

 1 1 0 2 

  0 0 0 

4 4 4 0 8,6,5,4 

   1 2 

  3 0 6,4,3 

   1 0 

  2 0 4,2 

  1 0 2 

  0 0 0 

 2 2 0 4,2 

  1 0 2 

  0 0 0 

 0 0 0 0 
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The Hamiltonian in terms of the Casimir operator is given by [16,17,18,19,20,21] 

  ̂III = β  ̂O(5) + γ  ̂2O(3) + ξ  ̂2O(6)                                                                                                                                      (2-103) 

Where [21]                                                                                                                                                                                                                                                                                              

 ̂2O(6)   =2N(N+4) -2[[( † . †)-(s†.s†)][( ̃  ̃)   ( ̃  ̃) ]] =2N(N+4) - 8( ̂+
.  ̂   )                  (2-104) 

The eigenvalues are  

E= 2 ξ ζ ( ζ+4) + 2 β τ( τ+3) + 2 γ L (L+1)                    (2-105) 

Again, the various terms in the Casimir operators can be combined to write HIII in the 

convenient format of the multipole expansion [69,70,71] 

 ̂III = ao (P
+ P) + a1( ̂.  ̂)  + a3( ̂3.  ̂3)                                                                                 (2-106) 

Here the P
+
P term stems from the C2O6 Casimir, that is, from the presence of the subgroup O(6). 

Due to the common use of the multipole Hamiltonian, the form of the (equivalent) eigenvalue 

expression that has most frequently appeared in the literature is [69,70,71,72,73,74,75] 

E = 
  

  
  (N-ζ)(N+ζ+4)+ 

  

 
 η(η+3)+ (a1 - 

  

  
) L(L+1)                                                             (2-107) 

     We can see that how change levels of energies with depended on their quantum number   
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Figure (2-4): Low-lying levels of the O(6) limit, for N = 6 [16,17]. 

       Since T(E0) is diagonal in the U(5) basis states, it must require ∆η = 0. Using Eq. (2-25), it 

is trivial to see that, in addition, ∆ζ = ± 2 is necessary to avoid a cancellation in the contributing 

components. Thus the only predicted E0 strength to the ground state is from the σ =N — 2, τ =0 

state, where the matrix elements take the form 

⟨                               ⟩=    [
                

       
]
 

 ⁄

            (2-108) 

Again electric quadrupole transition is given in Eq.(2-26) [17] 

The B(E2) value for this symmetry connecting ζ = ζmax  and L = 2 η  is [16,17] 

B(E2; η+1→ η ) =   
  

     

     
(N-η)( N+ η + 4)                                               (2-109) 

For L=0 lower state Eq.(2-109) become  

σ = 6 σ = 4 σ = 2 σ =0 

τ =0 

τ 

0 

1 

2 

τ 

0 

1 

2 

3

4 

τ 

0 

1 

2 

3 

4 

5 

6 
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B(E2;   
 →   

 ) = 
  
 

 
 N( N+4 )                                                                                             (2-110) 

For L=2 

B(E2;   
 →   

 ) =   
  

 

 
 (N-1)( N+5)                                                                                     (2-111)        

The ratio between eq. (2-110) and (2-111) can be written as [16,17]  

R = B(E2;   
 →   

 )  B(E2;   
 →   

 ) = 
  

 
 [

          

      
]                                                     (2-112) 

If N→        

R = 
  

 
                      (2-113) 

Also from the second selection rule and from     operator in the O(6), the electric quadrupole 

moment will be  

QL = 0                     (2-114) 

A typical spectrum generated by the Hamiltonian is shown in the figure (2-5) 

                 (σ,v∆) 

 

Figure (2-5): A typical spectrum with O(6) symmetry and N=6.in parentheses the quantum 

numbers (σ) and (v∆) appear [17,18,19,20,21]. 

E
(M

eV
) 
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     Since the SU(3) wave functions are complicated linear combinations of U(5) basis states 

with many nd values, it is not surprising, first, that <nd>g.s. is larger than in either U(5) or 0(6), 

or second that it changes little from state to state. Figure (2-6) illustrates this by showing the 

values of < nd > for the yrast band calculated for all three limits by diagonalizing the appropriate 

Hamiltonian. In U(5), changes in the (single) nd value characterizing each state are reflected 

directly in the state-dependent behavior of various observables. In contrast, in SU(3), the value 

of any matrix element normally results from subtle coherent effects, as befits a collective 

deformed intrinsic state. 

 

Figure (2-6): Expectation values of  ̂d in the yrast states for the three symmetries of the 

IBA   N = 6 [17]. 

 

   Finally we can know Dynamical symmetry plays a major role in nuclear structure, they are 

best understood in terms of the interacting boson model. The IBM model predicts the existence 

of the dynamical symmetries which coincide with the geometrical shapes associated with the 

rotation of deformed, prolate nucleus, a spherical harmonic oscillator and an oblate deformed 
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rotor. Examples of all these cases have been found in nature. And each group described by self-

quantum number and the ratio between energy levels in any nucleus in each group depended on 

that quantum number since like before discussion the ratio between energy levels are 

                                  :      :      :      = 1:2:3:4    U(5) 

E2:E4:E6:E8 =          :     :     :      = 1:2.5:4.5:7      O(6)                                           (2-115) 

                                 :     :     :      = 1:3.33:7:12   SU(3)   

  The distinctive structures of the three dynamical symmetries in the IBA provide three clear-cut 

limits of the general Hamiltonian. Although evidence exists which suggests that some of the 

features of the pure symmetries are observed empirically in selected nuclei, in general, a 

realistic calculation will require a departure from the strict limits or indeed a transition between 

them. In this context the analytic limits emerging from the group theoretical treatment of the 

Hamiltonian can be viewed as "benchmarks" in constructing a more accurate description of the 

low-lying collective structure of a particular nucleus, or series of nuclei. This approach can be 

illustrated diagrammatically in the form of the symmetry triangle in the figure (2-7) [17]. 

      The three apexes represent the limits of one of the exact symmetries, while the space 

enclosed by the three sides denotes the range of more general solutions that can be obtained 

numerically by diagonalizing the IBA-1 Hamiltonian of Eq. (2-14). A transition between two 

specific symmetries, without invoking any of the characteristics of the third, would correspond 

to a path along one of the three sides, but a more complex path between two limiting cases is 

clearly also possible [80,81]. For a transition along the sides, the structure at any point will be 

determined by the ratio of the two parameters [see Eq. (2-14)] that characterize the symmetries 

in question, and these are also indicated in the figure. 
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Figure (2-7): Casten triangle which shows the transitional regions between the three 

dynamical symmetries [17]  

Three transitional regions can occur in the space of the IBM, as a result of perturbation of the 

two limits [70,71,72,73,74,75], can describe in the following table  

Table (2-4): classification of the transitional region in the space of IBM 

U(5)-SU(3) SU(5) – O(6) SU(3) – O(6) 

It contains U(5) and SU(3) 

limits  

its region contains both 

SU(5) and O(6) limits 

this region contains both 

SU(3) and O(6) limits 

 ̂I+II
 = ɛ (nd) + a1( ̂.  ̂)  + a2( ̂.  ̂)    

[ 2,3,65]  

 ̂I+III
 = ɛ (nd) + ao ( ̂.  ̂) + a1( ̂.  ̂)  

+ a3( ̂3.  ̂3)          
   [2,3,8] 

 

 ̂II+III
 = ao ( ̂.  ̂) + a1( ̂.  ̂)  + 

a2( ̂.  ̂)    

[3] 

The solution of Hamiltonian 

depended on the ratio (ε a2) 

,for large (ε a2) the spherical 

solution dominates or U(5). 

While for (ε a2) → 0 (small), 

the SU(3) will be dominates.  

 

The nuclear structure 

depended on the ratio (ε ao), 

for the large (ε ao) the U(5) 

will be dominates but for the 

small (ε ao) the O(6) will be 

dominates.  

 

The solution of Hamiltonian 

depended on the ratio of 

(ao a2), for large (ao a2) the 

O(6) limits dominates, while 

for (ao a2)→ 0 (small) the 

SU(3) dominates.  

 

 

 

      

III   (aO) 

I  (ε) 

II (a1) 

γ-soft 
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2.2 Interacting Boson Model-2  

     Further developments were made to extent the space of IBM, in IBM-2 version, where 

distinction between neutron bosons and proton bosons was made. This assumption allows IBM 

to describe states interpreted as neutron-proton interaction. The microscopic picture of the IBM 

is very complicated. A commonly used microscopic picture is given in terms of collective pairs 

of nucleons. The s and d pairs of valence nucleons have angular momenta J = 0 and J = 2, 

respectively. These pairs correspond intuitively to the s and d bosons, respectively. The building 

blocks of the IBM-2 are the proton bosons sπ, dπ and the neutron bosons sν, dν.in the IBM-2 We 

tried to keep to a minimum number of free parameters in the Hamiltonian and we thus 

considered equal values for the neutron and proton d-boson excitation energy, in addition to the 

standard quadraupole interaction and Majorana term. We only considered the dipole neutron-

proton boson interaction whose strength is characterized by a single parameter Mπν 

[61,62,63,64,65,66]. One should expect, however, to obtain a more realistic description of 

nuclei by treating protons and neutrons as different particles, as they are. One introduces proton 

bosons sp and dp as well as neutron bosons sn and dn [16,17,18,19,20,21]. The total number of 

proton bosons introduced equals the number of valence proton pairs (particles or holes, 

whichever is minimum) in the nucleus under study.  Similarly, the number of neutron bosons 

introduced equals the number of valence neutron pairs (particles or holes). Since in medium and 

heavy nuclei the valence protons and the valence neutrons occupy different major shells, no 

proton-neutron pairs can be treated as a mean field interaction between the proton bosons and 

the neutron bosons. The IBM-2 can be used to the description of the low-lying energy levels and 

the other spectroscopic properties of heavy nuclei such as quadrupole moment and M1 transition 

on proton-neutron degree of freedom and on the other hand can predicted the mixed symmetry 

for the nuclei [69]. 
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2.2.1 IBM-2 Hamiltonian  

     The IBM-2 has special practical significance because its parameters depend on a smoothed 

curve on π- and ν -boson numbers and it makes possible to calculate unknown nuclear spectra. 

The interest in the algebraic structure of the IBM-2 has even grown since states with special 

magnetic dipole properties are known which can be explained with group theoretical methods. 

The numbers of π-bosons Nπ and ν-bosons Nν are fixed equally. There is no boson composed of 

a proton and a neutron. There exist 12 creation operators for bosons 

     
    

       
    (m =-2,-1,…..,2)               (2-116) 

, and  

     
    

       
    (m =-2,-1,…..,2)               (2-117) 

And we have the same number of tensor operator for boson annihilation like this 

 ̃          ̃      (m =-2,-1,…..,2)               (2-118) 

, and  

 ̃          ̃      (m =-2,-1,…..,2)               (2-119) 

     In analogy with commutation relation every d- or s-operator for protons commutes with 

every d- or s-operator for neutrons. We demand that both Nπ and Nv are good quantum numbers 

i.e. the Hamilton operator must meet the condition  

[ H, Nπ ] = [ H, Nv ] = 0                    (2-120) 

The total number of the bosons (N), is equal to the total number of proton bosons (Nπ) and 

neutron bosons (Nv) [61] i.e. 

 N = Nπ + Nv              (2-121) 

With the operators  

Nπ = √  [  
   ̃ ]

  +  
     =  ̂    ̂            (2-122) 
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The corresponding  

Nv = √  [  
   ̃ ]

  +  
      =  ̂    ̂             (2-123) 

     The IBM-2 Hamiltonian is modified with respect to the original IBM-1, therefore the vector 

space of the IBM-2 is then just product of all possible states (s , d)
Nv

 with those of (s ,d)
Nπ

 , and 

where in each factor the set of states is the same as in IBM-1. [76,77,78,79] 

 ̂   ̂   ̂                     (2-124) 

     Both  ̂  and  ̂  have the form of the IBM-1 Hamiltonian are for proton and neutron bosons 

respectively, but there is nothing than π- operator in  ̂  and v-operator in  ̂ , and the third part 

describes the interaction between them and can be written for proton and neutron both together 

as  

 ̂   = ∑  
 

         √      
 

 x [ ( †ρ x  †ρ )
L
 ( ̃x ̃)L

]
(0) 

                                                        (2-125) 

Where  

ρ =π or v                                                          (2-126) 

 The IBM-2 Hamiltonian which usually used in numerical calculation has form [76,77] 

 ̂      ̂       ̂     ̂   ̂     ̂   ̂     ̂   ̂   ̂                                         (2-127) 

Where  ̂  and  ̂   refer to the number of proton and neutron bosons and can take as  

ndρ  = (   
    ̃ )                                                              (2-128) 

Q and L in the equation(2-127) are quadrupole interactions and angular momentum respectively 

can be written as 

 ̂ 
 

 = [ †x  ̃ + s†x  ̃] 
  + χρ  [ †   ̃] 

                                                                        (2-129) 

 ̂  √   [  
    ̃ ]

   
                                       (2-130) 
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     the quadrupole operator in quadrupole-quadrupole interaction between proton and neutron, 

χπ(χv) represents the proton (neutron) quadrupole deformation parameter[ 77,78,79].   is the 

strength of the dipole among like nucleon interaction. And    ̂  is the Majorana interaction acts 

on the states, which are not fully symmetric under the interchange of the proton and neutron 

degrees of freedom. The (ξ2) and (ξK) are the parameters of the strength of this interaction. 

   ̂   = ξ2 [   
 x   

  -   
  x   

 ]2 .[ ̃ x  ̃  -  ̃ x  ̃ ]2 -2 ∑        [  
     

 ](κ)
.[  ̃  x  ̃ ](κ)      (2-131) 

   is the quarupole-quadrupole interaction strength. 

2.2.2 Electromagnetic transition operator   

The IBM-2 can interest to calculate some other important observable quantities such as 

transition operator. For transition operators, it is convenient to introduce parameters with a 

direct physical meaning. These are called effective boson charges and moments, and in general 

the transition operator can be written as [61] 

     =   
   

 +   
   

                          (2-132) 

Where   
   

 and    
   

 are the already known IBM-1 operators with the proton or neutron label 

attached to them. Have the same as (2-24 to 2-31). They are defined in the following way. For 

E0 transitions we can written as [16]  

           
      

                         (2-133) 

The most commonly used transition operator is quadrupole one (i.e. the E2 transition) which can 

be put in the form  

      = eπ.  ̂π + ev.  ̂v               (2-134) 

E4 transition is 
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          ̂     ̂                  (2-135) 

Where   (   ,   ), eρ (eπ, ev ) and    (  ,   ) are the protons (neutrons) effective charges of the 

E0, E2 and E4 respectively. The protons (neutrons) boson effective charges are assumed to 

depend only on the number of protons (neutrons). In calculations they are usually kept constant. 

And can be calculated microscopically, and Qρ has in the Eq.(2-129) but  ̂  can be written as  

 ̂  [  
    ̃ ]

   
                               (2-136) 

For the magnetic transitions, one introduces boson effective   factors. For Ml transitions 

(Magnetic dipole transitions) are also especially interesting, the relevant transition operator is  

T
(M1) 

= √
 

  
 (   ̂ +     ̂ )                     (2-137) 

While for M3 transitions they are defined by 

T
(M3) 

= √
 

  
 (   ̂ +     ̂ )                     (2-138) 

Where gρ (   ,   ) and   (   ,   ) are protons (neutrons) factors to the moments M1 and M3 

respectively, and can be calculated microscopically. The g-factors are assumed to depend only 

on the number of protons (neutrons) boson number. Notice that while in IBM-1 all M1 

transitions were forbidden if only lowest order terms were included in the transition operator, 

here this is no longer the case if       .  Thus the need to include higher order terms in the 

M1 transition operator in IBM-1 in order to allow for M1 transitions to occur can be seen as a 

way to simulate the proton-neutron degree of freedom in the IBM-1 framework, and  ̂  has in 

Eq.(2-130) but  ̂  can be written as  

 ̂  [  
    ̃ ]

   
             (2-139) 

     We turn now to nuclear radii. Nuclear radii can be calculated in the interacting Boson   

model-2 from the expression [21] 
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⟨  
 ⟩  ⟨  

 ⟩
   

             ⟨   
⟩                                                                          (2-140) 

Here ⟨  
 ⟩

   
 is the r.m.s. radius of the closed shell and ⟨   

⟩ expectation value in the ground 

state of the nucleus with   (  ) is the proton (neutron) bosons and proton d-boson number 

operator    
 is  ̂ 

 
 .  ̃ . The two terms              describe the overall increase in radius 

due to the increase in the number of particles, while the last term   ⟨   
⟩ describes the 

contribution to the radii due to the proton deformation. Nuclear radii are usually measured 

relative to the closed shell nuclei. 

2.2.3 Dynamical symmetry  

     The algebraic structure of the interacting boson model-2 is at first sight a trivial extension of 

that of the interacting boson model-1. However, it turns out that if one wants to exploit the 

concept of dynamic symmetries introduced in IBM-1 dynamical symmetries, a much larger and 

richer variety occurs here. The proton bosons introduced span the dynamical group Uπ(6), while 

the neutron bosons span the dynamical group Uv(6). Addition of the proton degrees of freedom 

to the neutron degree of freedom is achieved by taking the direct product of the two groups [69],  

 [     ]                                                (2-141) 

By using Eq.(2-34) the number of generator , this group has 72 generator, i.e. the 36 generators 

of       and the 36 generators of      . Thus, We have 72 generators of the U(6) group can be 

written down explicitly  

      = [s†  ̃]   
   

, [  † ̃]   
   

,[  † ̃]   
   

,[  † ̃]   
   

,[  † ̃]   
   

,[  † ̃]   
   

,[  † ̃]   
   

,[  † ̃]   
                      (2-142) 

   π          1              1            3            5            7            9           5            5    =   36 

   v          1              1            3            5            7            9           5            5    =   36 

     The main question then is how to reduce the algebra G to the rotation algebra [16], O(3), 

which we want always as a subalgebra, since nuclear states are characterized by a good value of 
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the angular momentum. Since protons and neutrons are rotated simultaneously [69], the 

generators of O(3) are obtained by summing those of the two rotation algebras, Oπ(3) and Ov(3) 

      = [  † ̃]   
   

 + [  † ̃]   
   

                     (2- 143)   

                  3                    3 

This corresponds to the familiar addition of angular momenta for protons and neutrons, 

 ̂   ̂   ̂                      (2-144) 

Since each of the U(6) algebras has a rich subalgebra structure, there are a variety of ways in 

which the algebra  [     ]              can be reduced to O(3). These are called lattices of 

algebras and we shall discuss here some in detail. We begin by considering the trivial case in 

which the only common algebra is that of O(3). This can be schematically written as [15] 

                  Uπ(5)                Oπ(5)           

Uπ(6)       SUπ(3)                  Oπ(3)           

                Oπ(6)                Oπ(5)           

                                                                                         Oπ+v(3)       Oπ+v(2)                      (2-145) 

                 Uv(5)                Ov(5)           

Uv(6)       SUv(3)                  Ov(3)           

                Ov(6)                Ov(5)           

Where we have added a subscript π + v to O(3) in order to indicate that it is obtained by 

summing the generators of Oπ(3) and Ov(3). From the practical point of view, this case is not 

particularly interesting since it does not produce anything new, although in here yield the 

possible chains in the IBM-2 begging with Uπ  v (6) [15,16] 

Uπ(6)   Uv     ⊃ Uπ  v (6) ⊃ Uπ  v(5) ⊃ Oπ  v(5)⊃ Oπ  v(3)⊃ Oπ  v(2)   (H
I
)              (2-146) 

Uπ(6)   Uv     ⊃ Uπ  v (6) ⊃ SUπ  v(3) ⊃ Oπ  v(3)⊃ Oπ  v(2)                  (H
II
)             (2-147) 

Uπ(6)   Uv     ⊃ Uπ  v (6) ⊃ Oπ  v(6) ⊃ Oπ  v(5)⊃ Oπ  v(3)⊃ Oπ  v(2)    (H
III

)           (2-148) 
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One thus recovers the symmetries contained in IBM-1. Clearly, these chains remain unchanged 

if the proton and neutron labels are interchanged. The states of the IBM-2 are characterized by   

two – row irreps { N- f ,f } of Uπ+ v(6) where N is the total number of bosons and  

f = 0,1 …. Min (  ,   )                                  (2-149) 

2.2.3.1 Vibrational limit (Uπ+ v(5)) : (H
I
) chain 

      In order to provide a complete classification scheme we now need to reduce representations 

of         to those of its subgroups. For totally-symmetric representations, which were the 

only ones occurring in the interacting boson model-1, the reduction was given in Sect. (2.2.3) 

here, however, we need the reduction also for mixed-symmetry states. The rules to obtain this 

reduction are much more complex. In general this chain describes the vibrational nucleus, it has 

25 numbers of generator for proton bosons and 25 number of generator for neutron bosons in 

term of unitary group with used the eq.(2-34). We can write it [16] 

         = [  † ̃]   
   

,[  † ̃]   
   

,[  † ̃]   
   

,[  † ̃]   
   

,[  † ̃]   
   

                               (2-150) 

   π            1              3               5             7               9   =   25  

    v            1              3               5             7               9   =   25 

like IBM-1 in here U(5) has subgroups O(5) with contain O(3) and component O(2), but in here 

generated to protons and neutrons such as discuses in Eqs.(2-47 ,2-49 and 2-51) but in here 

separately for proton and neutron number [69]. Some quantum number is a good quantum 

number to characterized this chain, hence the quantum numbers needed to classify the states in 

this chain are [15, 16]  
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Uπ(6)   Uv     ⊃ Uπ  v (6) ⊃ Uπ  v(5) ⊃ Oπ  v(5)⊃ Oπ  v(3)⊃ Oπ  v(2)  

 

    [ ̂ ][  ̂ ]           (N- f , f)       (ndπ , ndv)        (vπ , vv)α         L           M                                      

     The quantum number α is [ ̃    ̃  ] a quantum number required to completely specify the 

reduction O(5)⊃ O(3), that is [ ̃    ̃  ] represents missing labels. Because of the complex 

structure of the chain, we digress briefly here to discuss the question of how many labels are, in 

general, needed to classify uniquely basis states of a group generator. 

     For some special cases, the number of missing labels is reduced. For example, if the O(5) 

representations are totally symmetric [16], the selection rule for seniority begin 

 vπ = v, vv = 0                               (2-151-a) 

 As it is the case in the interacting boson model-1, only one missing label is needed,  

 ̃    ̃   ̃  = 0                                                                                                             (2-151-b) 

we note that the representations of Uπ  v (6) , Uπ  v(5) and Oπ  v(5) are all two-rowed, i.e. 

[ ̂   ̂ ]  [ ̂   ̂         ]  

                                                                                                                       (2-152) 

                   
 

     The values of            contained in the representation [N, 0] of Uπ  v (6) are given by 

Eq.(2-53). For the representation [N — 1,1] they are 

                           …           

                                          …                                                (2-153) 

 

Similarly, the values of          contained in the representation (    0) of Uπ  v (6) are given by 

Eq. (2-54). For the representation (n   1,1) they are 

                         …                                    
                                   …                                                             (2-154) 
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Finally, the values of L contained in a representation (v,0) are given by (2.58). Those contained 

in (v — 1,1) are 

            …     
                    …              

                          …                                                     (2-155) 

                    …              

         ………   
 

These rules give the results shown in Table (2-5) 

Table (2-5): Partial classification scheme for chain I 

                                

[     ]                       

[1,1] (1,0) (1,0) 2 

 (1,1) (1,1) 3,1 

[2,1] (2,0) (2,0) 4,2 

  (0,0) 0 

 (1,0) (1,0) 2 

 (2,1) (1,0) 2 

  (2,1) 5,4,3,2,1 

 (1.1) (1,1) 3,1 

[3,1] (3,0) (3,0) 6,4,3,0 

  (1,0) 2 

 (2,0) (2,0) 4,2 

  (0,0) 0 

 (1,0) (1,0) 2 

 (3,1) (2,0) 4,2 

  (3,1) 7,6,5
2
,4,3

2
,2,1 

  (1,1) 3,1 

 (2,1) (1,0) 2 

  (2,1) 5,4,3,2,1 

 (1,1) (1,1) 3,1 

 

The wave function which describes this chain is given as:[15,16,69] 

| ⟩  |[ ̂ ][  ̂ ]                                        ⟩                                              (2-156) 

The Hamiltonian is given by  

 ̂I 
= A1 C1Uπ v (5)  +A2 C2Uπ v (5) +B C2Oπ  v(5)  + C (C2 Oπ  v(3)) + a M                       (2-157) 
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The eigenvalue for this chain is given  

〈 ̂ 〉 = A1 (ndπ + C) + A2 (ndπ(ndπ +4) + ndπ(ndπ+2)) + B (vπ (vπ +3) + vv (vv +1)) + CL(L+1) +        

a (
 

 
 - F) (

 

 
 + F+1)                                                                                                                (2-158) 

Uπ  v(5) dynamical symmetry (vibrational nucleus ) arises when χρ =0 (ρ=π ,v). The spectrum of 

states corresponding to energy level is shown in Fig. (2-8). 

 

Fig.  (2-8): A typical spectrum only the lowest states of the irrep [N] and [N-1] with         

Uπ  v (6) ⊃ Uπ  v(5) symmetry in IBM-2, and Nπ = 2,Nv=1.[16]. 

  

2.2.3.2 Rotational limit (SUπ  v(3)) : (H
II 

) chain 

    In general this chain describes the rotational nucleus. It has 8 numbers of generator for proton 

bosons and 8 number of generator for neutron bosons in term of special unitary group with used 

the eq.(2-70). We can written as  
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GSU(3)ρ= [  † ̃]   
   

, [( †  ̃ + s†  ̃)]   
   

 

 
√  [  † ̃]   

   
                                                           (2-159) 

π                3                                  5                                =   8  

v 3                                   5                               =    8 

These generators can be rewriting as  

GSU(3)ρ= {     
    ,     

   
}                                                                                                         (2-160)     

Where Q and L are angular momentum and  quardupole operators respectively from equ. (2-

129) and equ.(2-130). This group has again O(3) as a subgroup with 3 number of generator and 

its component O(2) has only one number of generator but in here generated to protons and 

neutrons such as discuses in Eqs.( 2-49 and 2-51) but in here done separately for proton and 

neutron number. In the definition of the quadrupole operator in principle also  
 

 
√   is allowed 

instead of  
 

 
√ . This sign change makes no difference in the calculation of excitation 

energies, it will only change the sign of the quadrupole moment hence in the SUπ  v(3) 

limit(rotational nucleus) arises when χρ=  
√ 

 
 (ρ=π ,v).  Again some quantum number is a good 

quantum number to characterized this chain, hence the quantum numbers needed to classify the 

states in this chain are given by [15,16,69] 

Uπ(6)   Uv     ⊃ Uπ  v (6) ⊃ SUπ  v(3) ⊃ Oπ  v(3)⊃ Oπ  v(2) 

 

   [ ̂ ][  ̂ ]         (N- f , f)           (λ , μ)              L              M  

     In addition, a quantum number   is needed to fully specify the reduction from SU(3) to O(3). 

That   is missing labels. The representations (λ , μ) contained in a representation [N,0] of U(6) 

are given by (2.75). Those contained in a representation [N — 1,1] are 
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                                                                                                                               (2-161) 

              ……  

With   other quantum number is  

                  ……                                                                                       (2-162) 

     Other selection rule and the reduction from SU(3) to O(3) is the same as in Eq.(2-76,2-77 

and 2-78) are given in IBM-1 calculation. These rules give the results shown in table (2-6) 

 

Table (2-6): Partial classification scheme for chain II 

Uπ  v (6) SUπ  v(3) Oπ  v(3 

   [ ̂   ̂ ]                L 

[1,1] (2,1) 3,2, 1 

[2,1] (4,1) 5,4,3,2, 1 

 (2,2) 4, 3,2
2
,0 

 (1,1) 2, 1 

[3,1] (6,1) 7,6, 5,4, 3,2, 1 

 (4,2) 6, 5, 4
2
, 3, 2

2
, 0 

 (3,1) 4,3,2, 1 

 (2,3) 5, 4, 3
2
, 2, 1 

 (2,0) 2,0 

 (1,2) 3,2, 1 

The wave function which describes the states of this chain are specified as 

| ⟩  |[ ̂ ][  ̂ ]                          ⟩                                                                    (2-163) 

Then the Hamiltonian in this chain is given by [15,16,21,69,75,76,77,78,79] 

H
II
 = α

-
C2O(3) + β

-
 C2SU(3) + γ M                        (2-164) 

The eigenvalue is 

< H
II
> = α

-
 L(L+1) + β

-
 (λ

2
 + u

2
 + λu + 3(λ+ u) + γ ( 

 

 
 –F) ( 

 

 
 +F+1)        (2-165) 

      The Majorana term was written in terms of boson operator in Equ. (2-131) for ξ1=ξ2=ξ3 , the 

Majorana to the quadratic Casimir operator of   Uπ  v (6) as 



Chapter Two                                                                                     The Interacting Boson Models (IBM)  

67 | P a g e  
 

M = 
 

 
 [N(N+5)  -          ]                                               (2-166) 

The spectrum of states corresponding to energy level is shown in Fig. (2-9). 

 

Fig. (2-9): A typical spectrum only the lowest states of the irrep [N] and [N-1] with         

Uπ  v (6) ⊃ SUπ  v(3) symmetry in IBM-2, and Nπ = 2,Nv=1.[16]. 

 

 

2.2.3.3 (γ- unstable) limit (Oπ  v(6)) : (H
III

) chain 

       In general this chain describes the (γ-unstable) nucleus, it has 15 numbers of generator for 

proton bosons and 15 number of generator for neutron bosons in term of orthogonal group with 

used the eq.(2-93). It can be written as [16] 

GO(6)ρ = [  † ̃]   
   

, [  † ̃]   
   

, [( †  ̃ + s†  ̃)]   
   

                  (2-167) 

 π              3                7                     5            =     15 

 v        3               7        5            =     15 

like IBM-1 in here O(6) has subgroups O(5) with contain O(3) and component O(2), but in here 

generated to protons and neutrons such as discused in Eqs.(2-47 ,2-49 and 2-51) but in here 
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separately for proton and neutron number. And in the Oπ  v(6) dynamical (γ- unstable 

nucleus) , the (χπ) and (χv) have opposite sign (  - 
√ 

 
   χπ    0 and 0     χv    + 

√ 

 
 ) .  Again 

some quantum number is a good quantum number to characterize this chain, hence the quantum 

numbers needed to classify the states in this chain are [69] 

Uπ(6)   Uv     ⊃ Uπ  v (6) ⊃ Oπ  v(6) ⊃ Oπ  v(5)⊃ Oπ  v(3)⊃ Oπ  v(2)     

 

 [ ̂ ][  ̂ ]         (N- f , f)            ζπ, ζv       (ηπ, ηv) γ           L              M 

Where γ is           representing missing labels, it is necessary to completely specify the        

O(5) ⊃O(3) reduction. The representations of Oπ  v(6) and Oπ  v(5) are two-rowed 

                                            

                                                                                                 (2-168) 

 The representations         contained in a representation [N,0] of Uπ  v (6) are given in (2.96). 

The representations         contained in [N — 1,1] are given by 

                       …                                      
                                  …                                                          (2-169) 

The representations         contained in a representation of (ζ,0) of Oπ  v(6) are given by 

(2.98). Those contained in (σ — 1,1) are given by [16] 

         ς        ς       …          
                   ς        ς       …                                                                                   (2-170) 

The reduction from Oπ  v(5) to Oπ  v(3)is the same as in (2-158). These rules give the results 

shown in Table (2-7) 
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Table (2-7): Partial classification scheme for chain III 

 

Uπ  v(6) Oπ  v(6) Oπ  v(5) Oπ  v(3) 

[ ̂   ̂ ]                 L 

[1,1] (1,1) (1,0) 2 

  (1,1) 3, 1 

[2,1] (1,0) (1,0) 2 

  (0,0) 0 

 (2,1) (2,0) 4,2 

  (1,0) 2 

  (2,1) 5,4,3,2,1 

  (1,1) 3, 1 

[3,1] (2,0) (2,0) 4,2 

  (1,0) 2 

  (0,0) 0 

 (3,1) (3,0) 6,4,3,0 

  (2,0) 4,2 

  (1,0) 2 

  (3,1) 7,6,5
2
,4,3

2
,2,1 

  (2,1) 5,4,3,2,1 

  (1,1) 3, 1 

 (1,1) (1,0) 2 

  (1,1) 3, 1 

 

The wave function for the states are fully characterized as [69] 

  ⟩  |[ ̂ ][  ̂ ]                                    ⟩                                            (2-171) 

And the Hamiltonian will be as [67.69] 

H
III

 = AC2Oπ  v(6) + BC2Oπ  v(5) + CC2Oπ  v(3) +aM                                (2-172) 

The eigenvalue is [75,76,77,78,79]  

< H
III

> = A (ζπ(ζπ+4) + ζv(ζv +2)) +B (ηπ(ηπ+3) + ηv(ηv+1))  

+CL(L+1) + a ( 
 

 
 –F) ( 

 

 
 +F+1)                            (2-173) 
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The spectrum of states corresponding to energy level is shown in Fig. (2-10) 

 

Fig. (2-10): A typical spectrum only the lowest states of the irrep [N] and [N-1] with         

Uπ  v (6) ⊃ Oπ  v(6) symmetry in IBM-2, and Nπ = 2,Nv=1.[3]. 

2.2.4 Mixed-symmetry  

      When the proton-neutron degree of freedom is included in the interacting boson model, 

additional classes of states called mixed-symmetry states are allowed. When compared to their 

symmetric counterparts, these states have a negative phase factor between the proton and 

neutron boson components of the wave function. The experimental signatures for these mixed-

symmetry states are strong Ml transitions to symmetric states. In the IBM-2, proton and neutron 

bosons are treated independently, and this results in an additional degree of freedom, which 

essentially can be thought of as a phase factor between proton and neutron components of the 

wave function. When all of the proton and neutron bosons in the system are in phase, the state is 

considered to be a symmetric state. These tend to appear at lower energies in the system and are 
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analogous to the states that are found in the sd-IBM-1. When some of the proton and neutron 

bosons in the system are out of phase, an additional class of states appears that are called mixed-

symmetry states [15]. These states can be illustrated geometrically with some of the proton and 

neutron bosons oscillating or rotating out of phase, and an example of this can be seen in  

Fig.(2-11) 

 

Fig.(2-11): Geometric illustration of collective motion in symmetry and mixed-symmetry 

states in IBM-2 [15].  

 

     As we have seen, the major difference between IBM-1 and IBM-2 is that the latter contains a 

whole class of states, the mixed symmetry states (MISS), which are completely missing from 

IBM-1. In the early days of the model the existence of MISS was a puzzle, since they were 

predicted to occur at rather low energies but no such state had been seen experimentally. It was 

then argued that ―obviously‖ these states were lying very high in energy, and the coefficient of 

Majorana term in the Hamiltonian was made ―big‖, in order to push the MISS far up in the 

spectrum. Actually, this was the reason the Majorana term was introduced at all. In the IBM-2, 

matrix elements of the  ̂2
 operator can be directly calculated in order to evaluate the proton-

neutron boson symmetry of each state. Experimentally, such matrix elements are not observable, 

so other signatures for mixed-symmetry states are important to identify. In the IBM-1, off-
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diagonal Ml transition matrix elements vanished, due to the L operator referring to total angular 

momentum, which is a good quantum number for each state. This means that  ̂ only effects 

diagonal terms in the Hamiltonian [69]. The Ml operator in the IBM-2 is constructed from a sum 

of  ̂  and  ̂ , which can be seen in Eq. (2.137) To help illustrate how the Ml operator behaves 

in the IBM-2, it can be rewritten in the following way: 

 ̂     √
 

   
(                             )                                           (2-174) 

     The term with         refers to the total angular momentum, which is a good quantum 

number for each state, and it therefore only affects diagonal terms of the Hamiltonian. That 

leaves the term with         as the only part that contributes to Ml transition matrix elements 

between states. The operators    and    conserve the underlying U(5) quantum numbers, so the 

        term effectively creates a phase difference between proton and neutron bosons, and 

can change the F-spin of a state [15]. The matrix elements of the Ml transition operator can be 

large between states of different F-spin, and an example using the Uπ  v (5) Hamiltonian from     

Fig.(2-12) will help illustrate this.  

 

Figure (2-12): Illustration of states in a two boson Uπ  v (5) Hamiltonian using the IBM-2.  

F-spin is a good quantum number for this Hamiltonian, and the Majorana operator 

simply shifts the mixed-symmetry states up or down by the parameter λ [13]. 
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The Ml transition matrix elements between states with F = Fmax vanish, because the phase 

difference created by the         term of the operator causes the terms in the matrix element 

to completely cancel. That is, M1 transition can be used to identify the mixed symmetry of 

states.  

Another interesting point is the Majorana terms  ξi (with i=1,2 and 3 ) is to specify the mixed 

states from symmetric and controlling the energy of such states with cross pending to these in 

experimental data. This dependence of level energy on the Majorana term is a good indication 

that contains a mixed symmetry contributions. In the U(5) [15,69,75,80,81] limit the mixed-

symmetry states can be interpreted as vibrations of the neutrons and the protons which are out of 

the phase, in contrast to the symmetric state, associated with a simultaneous vibration of the 

neutrons and the protons, in the SU(3) limit mixed-symmetry states formed if the deformation 

distributions of neutrons and protons do not coincide , however, that the shape of the 

distribution itself is the same for neutrons and protons (either  prolate or oblate ) in SU(3) which 

is the geometrical analogue of the conditions of F-spin symmetry in the algebraic model. 

Finally, for the O(6) limit the geometrical interpretation is similar to the SU(3), but in this case 

the shape of the neutron and protons distribution ranges continuous from prolate to oblate (γ-

unstable) [75,80,81]. 

it is convenient at this point to introduce a quantum number called F-spin. A particularly 

important property of the IBM-2 is that each proton-neutron symmetry described of each state is 

specified in terms of a new quantum number called F-spin [15,16], The F-spin can be defined as  

F = 
 

 
 – f                               (2-175) 

The zero- component is  

 ̂  = 
 

 
 ( ̂    ̂ )                       (2-176) 
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Then one can characterize the states by the quantum numbers N, F, and F0. Clearly the totally 

symmetric states span the one –row  irrep of Uπ  v (6), [N,0]. Thus they are characterized by 

f=0, which implies that they possess the maximum possible value of the F-spin is  

Fmax = 
 

 
N = 

 

 
 [ ̂    ̂ ]                            (2-177) 

It is clear that the states of maximum F-spin are in one to one correspondence with the states of 

IBM-1. States with F-spin less than the maximum value of 
 

 
 have no counterparts in IBM-1. 

They have mixed proton-neutron symmetry character, thus they are called mixed symmetry 

states [75,76,77,78,79]. That is when F= Fmax , the IBM-2 states become fully symmetric and 

reduced to the state of the IBM-1 , but if the F < Fmax , the states have no counterpart with IBM-

1, they have mixed  p-n symmetry and they are called mixed state symmetry (MS). The F-spin 

operator is constructed in the following way [15] 

  ̂+ 
=   

   ̃  +   
 .  ̃                               (2-178) 

 ̂ - =   
   ̃  +   

 .  ̃                     (2-179) 

 ̂0
 =   

   ̃ -   
   ̃  +   

  ̃  -   
  ̃                                           (2-180) 

 ̂2
 =   ̂+ ̂ - +  ̂0 ̂0

-  ̂0 
                           (2-181) 

The  ̂2
 operator can be directly evaluated as a two-body matrix element of states from an IBM-2 

calculation, which gives information about the proton-neutron boson symmetry of the state. 

When F-spin is a good quantum number for a Hamiltonian, the maximum value it can have is 

Fmax= 
 

 
 [ ̂    ̂ ] and this corresponds to a symmetric state. For a mixed-symmetry state with 

one proton boson and one neutron boson out of phase,  F = Fmax — 1. The minimum value that 

F can have is Fmin = 
 

 
 | ̂    ̂  . 
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2.2.5 Delta mixing ratio  

    Delta mixing ratio can produce when the E2 and M1 transition between two states are 

allowed both together, and it is the reduced E2 and M1 matrix elements [15]  

∆(E2 M1) = 
〈  ‖     ‖  〉

〈  ‖     ‖  〉
 
    

    
                                          (2-182) 

And related to the conventional experimental mixing ratio δ (E2 M1) according to the 

ref.[80,81] 

δ (E2 M1) = 0.835 Eγ x ∆(E2 M1) 
    

    
                                                                               (2-183) 

Where Eγ the transition energy in (Mev), whereas ∆(E2 M1) is essentially a geometrical factor 

depending on the angular momentum of the initial and final state. An interesting aspect of the 

IBM, from the point of view of the mixing ratio, is the treatment of the M1 operator [15]. In the 

IBM-1 the lowest M1 transition can be vanishing, since it is described as one body operator and 

characterized with β1[ d
+ 

x  ̃] 
   

 since it is proportional with total angular momentum, but in 

higher-order term it cannot vanish. And in (IBM-2), the lowest-order M1 operator is no longer 

proportional to the total angular momentum operator and hence, in general, M1 transitions are 

allowed. In here the delta mixing ratio in IBM-2 is produced to reduce the matrix element 

between E2/M1.  
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Chapter Three 

Computer programs for IBM-1 and IBM-2 

      In this chapter, we describe the computer program to calculate the nuclear properties for Zr-

nuclei by using interacting boson model for both versions (one and two) [84,85]. We have 

already been installed on pc-computer and used the Fortran power station-90 software to help 

that purpose. We have two main versions for that program IBM-1 (called version one) and IBM-

2 also (called version two). 

3.1 IBM-1  

      By using this program, this version can calculate some properties of the nuclei theoretically  

as energies of states with possible angular momentum for states, the matrix elements for 

quadrupole moment and electromagnetic transition probabilities, and coefficients of the 

potential energy surface of the nucleus. In this version, we have a file called (IBS1.for), whose 

type is Fortran type and can be used to calculate the above properties  when we can run from 

Fortran power station by connecting both (IBSL.for) and (Eigsad.for). This is schematically 

illustrated in figure (3-1). Both (IBSL.for) and (Eigsad.for) are two other main programs in this 

version, each of them which can be used for a special purpose. (IBSL.for) can be used to solve 

the Hamiltonian matrix elements of one and two body terms, because it contains a number of 

subroutines that work like sub-programs for a number of functions. On the other hand, (Eigsad) 

program can be used to calculate the binding energy and to produce the diagonalization of the 

Hamiltonian matrix elements, since this aim is useful to calculate the eigenvalues and 

eigenvectors for all levels with definite angular momentum of the state. 
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      When we compile the (IBS1.for) in the Fortran power station to obtain the objective of that 

file at the same time, insert both (IBSL.for) and (Eigsad.for) program to that file and both 

together can be compiled in the Fortran, and we can produce a link between them to make an 

executable file or running file, called (IBS1.exe) whose type is (exe or application file). And, we 

can input data in here to found above properties of the nucleus. The input data that can be used 

for IBM-1 version are the total boson number of the nucleus, and the Hamiltonian parameters 

such as ɛ,a0, a1, a2, a3, a4 and χ. But to calculate the perfect energy levels here, we wanted the 

other main program called (CFP.for), must be compiled in the Fortran power station and linked 

to produce the executable (application) file since the output of this file (CFP.OUT) is used as an 

input parameter and can be calculates the one body coefficient of fractional parentage and the 

CFP.OUT file stored and then used to calculate the electromagnetic transitions between these 

levels. When we want to run the program (IBS1.EXE), the input file must have contained the 

information, data and parameter of Hamiltonian matrix. That file is the file.Dat type. We 

inputting the names of that file into IBS1.EXE and must be equal or less than 9 character 

because in the IBS1.FOR we mentioned that the input and output can take 9 characters or less 

than 9. Here, we can named the input files as ZrA.inp, where A is the total number of the 

nucleons (proton and neutron) of the nucleus. After running we can obtain the same file for 

output such as ZrA.out. 
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   Figure (3-1): The structure of IBS1 code.  

      The above structure of IBS1 program cannot obtain the electric quadrupole moments    
   

and the electromagnetic transitions probabilities B(E2), so they must be found in another 

program in version one. That program is called (IBST.FOR) that contains the information about 

(  
  and B(E2)) and it’s a main program of the version one  to calculate the electric quadrupole 

moments and B(E2) values for the nucleus. The running of this program is similar to the IBS1 

program, which we can compile in the Fortran power station connected with IBSL.FOR and 

EIGSAD.FOR together, and we make a link between them to produce the IBST.EXE file. As in 

IBS1 program, we need to compile and link the CFP.FOR file for this program. The IBST 

program should be executed directly after IBS1 program, because IBS1 program produces a 

file.dat from functional statement of the EIGSAD program called EIG.INP which contains data 

required in the calculations of B(E2). And, in the IBST program we need the input file.dat type 
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and named by BE2.INP, that contains the value of effective charge   
  for protons and neutrons 

and in version one does not differentiate between the protons and neutrons. With χ, SO(6) 

parameter takes a constant value for all isotopes and the value of angular momentum(J), as well 

as an input parameter. This is required to find the electric quadrupole moments and initial and 

final states which are needed to find the B(E2) between them. And, the structure of the IBST is 

illustrated schematically in the figure (3-2).  

 

Figure (3-2): structure of IBST program 
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3.2 IBM-2 

       Here we can also calculate the properties of Zr- nuclei by using the interacting boson 

model-2, which is distinction between protons and neutrons. By using the Fortran power station, 

and in this version to calculate the eigenvalues and eigenvectors for all states with definite 

angular momentum itself, we can use the (NPBOSN) program, since in term of this program we 

can diagonalize the Hamiltonian matrix elements. And to calculate the electromagnetic 

transitions between states and moments of the nuclei, we can use another program called the 

(NPBTRN) program since in program has a useful function to calculate the electromagnetic 

matrix elements between eigenstates. For the first purpose to calculate eigenvalues and   

eigenvectors for all possible states, we need some coefficients and parameters to put into the 

(NPBOSN) program, such as coefficient of fractional parentage (c.f.p), Racah coefficient and d-

boson number for one-body operator matrix element.  

      And, to create one body and two body c.f.p.’s for states we can use two other programs 

(CFPGEN) and (NPCFPG). By compiling and linking the (CFPGEN) program in the Fortran 

power station, the produced (CFPGE.EXE) file can create one body (c.f.p) for states and store in 

the file.dat called (cfp1). On the other hand, to produce the two-body (c.f.p) for states, we use 

the (NPCFPG) program in the Fortarn power station, when compiling and linking can obtain an 

output file.dat named by (cfp2). In the (CFPGEN) program, we need the total number of boson 

to input data and need the maximum number of d-boson to input data for (NPCFPG) program. 

(cfp1) and (cfp2) files are illustrated schematically in figure (3-3). 
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Figure (3-3): structure of CFPGEN and NPCFPG programs 

 

      And to calculate the Racah coefficient, (RACFL) program will be used. (RACFL) program 

can be compiled and linked to the Fortran power station, to produce the (RACFL.EXE) in which 

we put the input data and application file of this program then we run. The input file is called 

(Rac.dat) which contains the maximum number of d-boson (nd) and maximum number of 

angular momentum with identifying name of output file. The output of Racah coefficient stored 

in the file.dat is called (Rac6). This is illustrated schematically in the figure (3-4). On the other 

hand, to calculate the d-boson of one-body operator matrix element, we use another program 

called (DDMEFL) program when compiled and linked. We can input in the executed file the 

maximum number of d-boson in the file with two-body CFP file (cfp2), and here we can take 

the one-body matrix elements in a file.dat called (ddmef) that are used in the (NPBOSN) 

program. 
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Figure (3-4): structure of RACFL and DDMEFL programs  

     With the above function, coefficients and parameters are taken by the programs can be used 

in the (NPBOSN) program to calculate the properties of Zr-nuclei as energy levels with its 

definite angular momentum. In the (NPBOSN) program, we have some input parameter for 

nuclei which needs to identify the properties of the nuclei. These input parameters reading from 

(NPBOSN) program are stored in the file.dat called (Zrnn.inp) where (nn) is the no. of atomic 

mass of Zr-nuclei. We can produce the structure of the (NPBSON) program schematically as 

illustrated in figure (3-5). 



Chapter Three                                                                                 Computer programs: IBM-1 & IBM-2                                      

 

 

83 | P a g e  
 

 

Figure (3-5): structure of (NPBOSN) program 

      On the other hand, in the IBM-2 version to calculate the electromagnetic matrix elements 

B(E2), B(M1), Q-moments and μ-moments  we use the (NPBTRN) program running in the 

Fortran power station since information is stored in NPBTRN about these properties for Zr 

nuclei. Here, we need a file.dat named as Zr-nn, where nn is the no. of atomic mass of Zr-

nucleus. It is contains some input parameter to calculation the above properties of the Zr-nuclei. 

When we run the (NPBTRN) program, we can take the value of the B(E2) and Q-moment with 

the value of M1 transition in the states in the same file.dat called Zr-nn.out. The NPBTRN can 

be illustrated schematically in figure (3-6). 
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Figure (3-6): structure of NPBTRN program 

 

     The ratio between E2 transitions to M1 transitions are called delta mixing ratio that can be 

calculated from Delta_IBM2.for after running from the Fortran power station studio. 

Delta_IBM2.for contains all information about the delta mixing ratio as Hamiltonian parameters 

CHI (χ), effective charge boson and G-factor for both protons and neutrons. In this program, we 

must run the program for each isotopes and change the parameter since each parameter has 

selected parameters, and the input parameters in the input file are the electromagnetic 
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parameters from the output of B(E2) and B(M1) transitions called DS(N), DD(N), DS(P), and 

DD(P), with the gamma energy for each transition.  

Figure (3-7): Structure of Delta_IBM2 program  
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Chapter four 

Results and Discussion 

Introduction  

        In the framework of the Interacting Boson Models (IBM-1 and IBM-2), the nuclear 

structure of even-even Zr-isotopes are investigated. IBA-1 and IBA-2 Hamiltonian parameters 

are obtained as well as the extraction of the energy levels. Also, the electric quadrupole 

transition probabilities B(E2:Ji → Jf)  of the Zr-isotopes were calculated. In calculations, the 

theoretical energy levels and the electric quadrupole transition probabilities have been obtained 

by using PHINT code. Good agreement was found from a comparison between the calculated 

energy levels and the electric quadrupole transition probabilities B(E2) of the Zr-isotopes with 

the experimental data. 

       Calculations with IBM framework depend on the best fitting of Hamiltonian parameters to 

obtained the best result for the energy levels, B(E2) values, etc.. For the best choosing of the 

parameters, we must depend on the experimental data.  Important thing that we must know 

before all things is the shape of nuclei and to locate it in Casten triangle. To know the shape of 

the nuclei we used the energy value of experimental data for that purpose, where the ratio 

between the energy of (
   

   ) tell us what the shape of that nuclei is. From the Casten triangle of 

symmetry, three dynamical region produce SU(5),SU(3) and O(6), each of them is characterized 

by  a specified parameter in Hamiltonian Eq.(2-14). For instance SU(5) controlling with (ε), in 

SU(3) angular momentum and quadrupole moment interaction (a1L.L), and (a2Q.Q) are strong 

existence the rotational nuclei, and O(6) controlling with (a0P.P). SU(5) is the shape image of 
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vibrational nuclei, SU(3) is the shape image of rotational nuclei, and O(6) is of the γ-unstable 

nuclei. 

     Energy level calculations can be done by using the Hamiltonian Eq. (2-14), in the (IBM-1), 

and in (IBM-2) it can be done by using the Hamiltonian Eq. (2-127) in the Fortran power station 

program, such as IBM-1, each region of nuclei in IBM-2 specified by specific parameter in Eq. 

(2-127). For example the first term (  ) is dominated in vibrational like nuclei and second term 

(quadrupole-quadrupole interaction) is dominant in rotational nuclei with negative value of 

          , and with condition         in second term may be obtained the γ-unstable 

nuclei. 

        This work contains the calculation of energy scheme of the bands (G-band, β-band, and γ-

band), with the B(E2) and     
   which can be reproduced  in IBM by the inserting the effective 

charge (  
 ) for IBM-1 and (      ) for IBM-2. The IBM-1 calculation cannot take us the B(M1) 

transition, while in IBM-2 can take the magnetic transition probability B(M1), and this is useful 

to find the delta mixing ratio since it can be calculated from matrix element of B(E2) and B(M1) 

transitions. The mixed symmetry is another property of IBM-2, and it’s very sensitive to the 

Majorana terms in Hamiltonian of IBM-2. Where the state is fully symmetric the F-spin is 

maximum value, while the mixed symmetry state has F-spin with minimum value. If we have 

transition with strong B(M1),  the transition occur from the mixed  to full symmetric, and 

consequently δ-mixing ratio is small for gamma transitions.  

4.1 Energy spectrum  

     The energy ratios between    
  to    

  energy levels tell us about the nucleus shape 

symmetry, it’s necessary to produce the low-lying energy levels of a nucleus by IBM-1. SU(5) 

is vibrational nuclei with R4/2 has a limit value of 2, 2.5 for γ-unstable nuclei O(6), and 3.33 for 
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rotational nuclei SU(3). The variation of the experimental  
   

 

   
  value of Zr-nuclei with the 

neutron numbers is given in figure (4-1). It is clear that the 
80-108

Zr-isotopes distrusted between 

all limits, and we take the same result for those ratios in IBM-1 and IBM-2.  

   
   

 

   
   

 

Fig. (4-1): Variation of the energy ratios  
   

 

   
   with neutron number in 

80-108
Zr-isotops.  

 

   However, by using the parameters of Tables (4-1a, and b) and (4-2a, and b) in the Hamiltonian 

equations   (2-14) and (2-127) of IBM-1 and IBM-2 respectively, the result for a low-lying 

positive parity energy spectra has been obtained for      
       isotopes with neutron numbers 

N= 40,42,44,46,48,52,54,56,58,60,62,64,66, and 68. These low-lying energy spectra which 

obtained by IBM-1 and IBM-2 are within the SU(5), O(6), and SU(3) limits. We take the energy 

spectra for 
80-108

Zr-isotopes from the program for three bands, ground band with angular 

momentum:   
    

    
    

    
 , beta band with angular momentum:   

    
    

    
    

 , and 

1

1.5

2

2.5

3

3.5

38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

SU(5)

O(6)

SU(3)

EXP.

Neutron No. 



Chapter Four                                                                                               Result and Discussion 

 

89 | P a g e  
 

gamma band with angular momentum:   
    

    
    

    
 , and can be compared with 

experimental data as shown in the tables (4-3) 

Table (4-1a): The IBM-1 Hamiltonian parameters used for 
80-88

zr and 
92-94

zr    isotopes
   
 

 

Table (4-1b): The IBM-1 Hamiltonian parameters used for 
86-108

zr   isotopes
   
 

 

 

 

Parameters  Zr
80 

Zr
82 

Zr
84

 Zr
86 

Zr
88 

Zr
92

 Zr
94 

N 10 9 8 7 6 6 7 

ɛ    (Mev) 0.71 0.73 0.75 0.72 0.75 0.70 0.727 

ao   (Mev) 0.06 0.05 0.058 0.0 0.0 0.0 0.0 

a1    (Mev) 0.0105 0.0106 0.0108 0.011 0.0087 0.01 0.0115 

a2    (Mev) -0.010 -0.008 -0.008 -0.008  0.016 0.02  0.012 

a3   (Mev) 0.0 0.0 0.0 0.0 0.0 0.0089 0.0 

a4   (Mev) 0.0 0.0 0.0 0.0 0.0 0.0098 0.0 

CHI -1.35 -1.35 -1.35 -1.35 -1.35 -1.35 -1.35 

SO(6) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Parameters Zr
96 

Zr
98 

Zr
100 

Zr
102 

Zr
104 

Zr
106 

Zr
108 

N 8 9 10 11 12 13 12 

ɛ    (Mev) 0.64 0.80 0.55 0.48 0.46 0.53 0.52 

ao   (Mev) 0.05 0.122 0.0 0.04 0.06 0.05 0.05 

a1   (Mev) 0.03 0.02 0.0087 0.0087 0.0105 0.0105 0.0105 

a2  (Mev) 0.08 0.04 -0.016 -0.013 -0.008 -0.008 -0.008 

a3  (Mev) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

a4  (Mev) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

CHI -1.35 -1.35 -1.35 -1.35 -1.35 -1.35 -1.35 

SO(6) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
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Table (4-2a): The IBM-2 Hamiltonian parameters used for 
80-88

zr and 
92-94

zr    isotopes
    

 

Where all parameter in unit (MeV) except CHN and CHP 

 

 

 

 

 

 

 

 

Parameters Zr
80 

Zr
82 

Zr
84

 Zr
86 

Zr
88 

Zr
92

 Zr
94 

Nv 5 4 3 2 1 1 2 

Nπ 5 5 5 5 5 5 5 

ɛd 0.51 0.645 0.20 0.575 0.93 0.90 0.91 

 k (RKAP) -0.14 -0.24 -0.18 -0.15 -0.008 -0.008 -0.008 

kv  (RKNN) -0.05 -0.05 -0.05 -0.04 -0.001 -0.001 -0.001 

kπ  (RKPP) -0.09 -0.19 -0.13 -0.11 -0.007 -0.007 -0.007 

χv (CHN) -0.22 -0.22 -0.22 -0.80 -1.7 -1.7 -1.7 

χπ(CHP) 0.0 0.0 0.0 0.0 -1.0 -1.0 -1.0 

CLv (L=0) 0.0 0.0 -0.04 -0.001 0.0 0.0 0.0 

CLv (L=2) -0.1 -0.1 -0.04 -0.001 0.0 0.0 0.0 

CLv (L=4) -0.1 -0.1 0.275 0.3 0.0 0.0 0.1 

CLπ (L=0,2,4) 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 

ξ1 0.4 0.4 0.4 0.25 -0.1 -0.1 -0.1 

ξ2 -0.1 -0.25 -0.25 -0.6 0.285 0.285 0.385 

ξ3 0.4 0.4 0.4 0.25 -0.02 -0.02 -0.02 
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Table (4-2b): The IBM-2 Hamiltonian parameters used for 
96-108

zr   isotopes
  

Where  all parameter in unit (MeV) except CHN and CHP 

4.1.1 
80

Zr-isotope 

      The values of the low-lying positive parity states of 
80

Zr-isotope calculated by IBM-1 and 

IBM-2 models have been compared with the experimental data [86] as shown in the table (4-3). 

It is clear from the table that the available data are limited to   
    

    
    

        
  which are 

located at 0.289, 0.826, 1.605, 2.610, and 3.789 MeV respectively; are nicely reproduced by 

IBM-1 and IBM-2, but IBM-1 gives better fitting in comparison to IBM-2.  The experimental 

Parameters  Zr
96 

Zr
98 

Zr
100

 Zr
102 

Zr
104 

Zr
106

 Zr
108 

Nv 3 4 5 6 7 8 7 

Nπ 5 5 5 5 5 5 5 

ɛd 0.98 0.95 0.3 0.001 0.017 0.001 0.001 

 k (RKAP) 0.048 -0.03 -0.13 -0.15 -0.185 -0.180 -0.170 

kv  (RKNN) 0.020 -0.01 -0.06 -0.07 -0.060 -0.055 -0.05 

kπ  (RKPP) 0.030 -0.02 -0.07 -0.08 -0.125 -0.125 -0.120 

χv (CHN) -2.40 -1.0 -0.24 -0.24 -0.20 -0.18 -0.18 

χπ(CHP) -2.40 -1.0 -0.24 -0.24 0.0 0.0 0.0 

CLv (L=0) 0.90 -1.0 -0.15 -0.10 -0.04 -0.04 -0.04 

CLv (L=2) 0.90 0.05 -0.15 -0.10 -0.04 -0.04 -0.04 

CLv (L=4) 0.90 -0.1 -0.04 -0.02 -0.02 0.05 0.09 

CLπ (L=0,2,4) 
0,-0.598,0 -0.3,0.1,0.1 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 

ξ1 -0.15 -0.1 0.29 0.29 0.29 0.10 -0.10 

ξ2 0.40 0.1 -0.29 -0.29 -0.29 -0.29 -0.30 

ξ3 -0.15 -0.1 0.29 0.29 0.29 0.10 -0.10 
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data for beta and gamma band for 
80

Zr-isotope are not available and the IBM-2 energy value for 

these bands are pushed up and come higher than those of the IBM-1.  

Table (4-3): the comparison between the calculated and the experimental energy levels 

values of (
80

zr)  

 

J
+
 

Energy levels (Mev) 

EXP.       Ref.[86] IBM-1 IBM-2 

01
+ 

0.0 0.0 0.0 

21
+ 

0.289 0.328 0.386 

41
+ 

0.826 0.845 0.886 

61
+ 

1.605 1.537 1.529 

81
+ 

2.610 2.390 2.294 

101
+ 

3.789 3.397 3.201 

22
+ 

 0.940 0.985 

31
+ 

 1.452 1.586 

42
+ 

 1.576 1.619 

51
+ 

 2.176 2.341 

62
+ 

 2.347 2.364 

71
+ 

 3.047 3.233 

02
+ 

 0.947 1.218 

23
+ 

 1.658 1.934 

43
+ 

 2.170 2.146 

 

4.1.2 
82

Zr-isotope 

      The values of the low-lying positive parity states of 
80

Zr-isotope calculated by IBM-1 and 

IBM-2 models have been compared with the experimental data [87] as shown in the table (4-4). 

It is clear from the table that the available data are limited to   
    

    
    

        
  which are 

located at 0.407, 1.041, 1.888, 2.909 and 4.036 MeV respectively; are nicely reproduce by IBM-

1 and IBM-2 , and in    
      

  with experimental data 5.213, 6.490 MeV respectively [87], 

the IBM-1 also produces best fitting, IBM-2 are pushing these states up. Again there are no 
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experimental data for beta and gamma band for 
82

Zr-isotope are available. The predicted energy 

values for these bands by IBM-1 and IBM-2 takes from the program, but the IBM-2 pushed up 

the energy values of gamma and beta bands compared to the IBM-1, and the gamma band 

coming lower than the beta band.  

Table (4-4): the comparison between the calculated and the experimental energy levels 

values of (
82

zr)  

 

J
+
 

Energy levels (Mev) 

EXP.       Ref.[87] IBM-1 IBM-2 

01
+ 

0.0 0.0  0.0 

21
+ 

0.407 0.470  0.433 

41
+ 

1.041 1.095  1.049 

61
+ 

1.888 1.873  1.843 

81
+ 

2.909 2.795  2.821 

101
+ 

4.036 3.858  4.009 

121
+ 

5.213 5.057  5.461 

141
+ 

6.490 6.389  7.359 

22
+ 

 1.146 1.314 

31
+ 

 1.751 2.038 

42
+ 

 1.763 2.101 

02
+ 

 1.474 1.843 

23
+ 

 1.954 2.225 

 

4.1.3 
84

Zr-isotope 

The values of the low-lying positive parity states of 
84

Zr-isotope calculated by IBM-1 and IBM-

2 models have been compared with the experimental data [88] as shown in the table (4-5). It is 

clear from the table that the available data are limited to   
    

    
    

        
  which are 

located at 0.540, 1.263, 2.136, 3.089 and 4.069 MeV respectively; are nicely reproduce by IBM-

1 and IBM-2 , and in    
      

  with experimental data 5.136, 6.303 MeV respectively [88],the 
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IBM-1 and IBM-2 are pushed up. The gamma band head comes lower than  the beta band, with 

experimental data for   
    

    
  are 1.119, 1.888, and 2.740MeV, are reproduced nicely energy 

value by both IBM-1 and IBM-2, but there are no experimental energy values available for beta 

band, and the values of energy for that band by IBM-1 and IBM-2 systematically are not bad.  

Table (4-5): the comparison between the calculated and the experimental energy levels 

values of (
84

zr)  

 

J
+
 

Energy levels (Mev) 

EXP.       Ref.[88] IBM-1 IBM-2 

01
+ 

0.0 0.0 0.0 

21
+ 

0.540 0.517 0.429 

41
+ 

1.263 1.192 1.116 

61
+ 

2.136 2.021 2.015 

81
+ 

3.089 2.996 3.002 

101
+ 

4.069 4.113 4.196 

121
+ 

5.136 5.368 5.692 

141
+ 

6.303 6.758 7.525 

22
+ 

1.119 1.117 1.037 

31
+ 

 1.790 1.850 

42
+ 

1.888 1.880 1.854 

51
+ 

 2.642 2.544 

62
+ 

2.740 2.778 2.610 

02
+ 

 1.182 1.379 

23
+ 

 1.815 1.637 

43
+ 

 2.470 2.001 

 

4.1.4 
86

Zr-isotope 

     The values of the low-lying positive parity states of 
86

Zr-isotope calculated by IBM-1 and 

IBM-2 models have been compared with the experimental data [89] as shown in the table (4-6). 

It is clear from the table that the available data are limited to   
    

  which are located at 0.752, 

and 1.666 MeV respectively; are nicely reproduced by IBM-1, but IBM-2 are pulling down with 
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small amount compared by IBM-1. The   
  energy value with experimental [89] 2.669 MeV is 

well fitted with both IBM-1 and IBM-2. The    
        

  energy values with experimental 

value 3.298 and 4.326 MeV are pushing up by both IBM-1 and IBM-2. The experimental data 

for   
    

    
  are 1.422, 2.343, and 3.254 MeV in beta band are reproduced nicely by IBM-1, 

and also best fitting by IBM-2 for  
 , and small pulling down for   

       
   by IBM-2. No 

experimental data are available for gamma band, and the systematic of IBM-1 and IBM-2 

results are reasonable.  

Table (4-6): the comparison between the calculated and the experimental energy levels 

values of (
86

zr)  

 

J
+
 

Energy levels (Mev) 

EXP.       Ref.[89] IBM-1 IBM-2 

01
+ 

0.0 0.0 0.0 

21
+ 

0.752 0.698 0.513 

41
+ 

1.666 1.507 1.394 

61
+ 

2.669 2.431 2.401 

81
+ 

3.298 3.473 3.544 

101
+ 

4.326 4.634 4.976 

02
+ 

 1.259 1.420 

22
+ 

1.422 1.393 1.428 

42
+ 

2.343 2.244 2.008 

62
+ 

3.254 3.209 3.053 

23
+ 

 2.020 1.814 

31
+ 

 2.168 2.272 

 

4.1.5 
88

Zr-isotope 

     The values of the low-lying positive parity states of 
88

Zr-isotope calculated by IBM-1 and 

IBM-2 models have been compared with the experimental data [90] as shown in the table (4-7). 

It is clear from the table that the available data are limited to   
    

  which are located at 1.057, 
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and 2.139 MeV respectively; are nearly best fitting reproduce by IBM-1 and IBM-2 but pulling 

down with small amount compared with experimental data. The   
  energy value with 

experimental 2.811 MeV is in good fit with both IBM-1 and IBM-2. The    
  energy values with 

experimental value 3.391 MeV is  pushed up by both IBM-1 and IBM-2. The experimental data 

for beta band are reproduced nicely by both   IBM-1 and IBM-2, but for   
    

 , and for gamma 

band the IBM-1 is better fitting than IBM-2. ` 

Table (4-7): the comparison between the calculated and the experimental energy levels 

values of (
88

zr)  

 

J
+
 

Energy levels (Mev) 

EXP.       Ref.[90] IBM-1 IBM-2 

01
+ 

0.0 0.0 0.0 

21
+ 

1.057 0.911 0.890 

41
+ 

2.139 1.836 1.796 

61
+ 

2.811 2.786 2.722 

81
+ 

3.391 3.768 3.669 

02
+ 

1.521 1.682 1.788 

22
+ 

1.817 1.734 1.793 

42
+ 

2.605 2.616 2.698 

62
+ 

3.213 3.523 3.626 

82
+ 

4.388 4.487 4.583 

23
+ 

2.568 2.506 1.808 

31
+ 

 2.547 2.388 

43
+ 

3.074 3.324 2.740 

51
+ 

 3.389 3.405 3.154 

63
+ 

  4.177 3.692 

71
+ 

4.237 4.290 3.945 

 

4.1.6 
92

Zr-isotope 

     The values of the low-lying positive parity states of 
92

Zr-isotope calculated by IBM-1 and 

IBM-2 models have been compared with the experimental data [91] as shown in the table (4-8). 

Tthe available data are limited to   
    

    
        

 ; both IBM-1 and IBM-2 almost fitting    
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and    
  nicely, but pushing up for   

   and   
  . In the beta band the experimental data for 

  
    

    
    

  are 1.383, 1.847, 2.398, and 3.304 MeV, both IBM-1 and IBM-2 pushed up the 

  
 ,   

    
  states, while fitted nicely the   

  state. The experimental energy value for gamma 

band with   
    

        
  states are 2.182, 2.864, and 3.675 MeV, the IBM-1 is better in fitting 

than IBM-2 for    
       

  states but for   
  state vice versa. Our results are better than those of 

ref [40, 50] in both IBM-1 and IBM-2. 

Table (4-8): the comparison between the calculated and the experimental energy levels 

values of (
92

zr)  

 

J
+
 

Energy levels (Mev) 

EXP.       Ref.[91] IBM-1 IBM-2 

01
+ 

0.0 0.0 0.0 

21
+ 

0.935 0.924 0.860 

41
+ 

1.495 1.862 1.736 

61
+ 

2.957 2.821 2.632 

81
+ 

3.308 3.819 3.549 

02
+ 

1.383 1.695 1.728 

22
+ 

1.847 1.772 1.749 

42
+ 

2.398 2.669 2.637 

62
+ 

3.304 3.597 3.534 

23
+ 

2.182 2.532 1.763 

31
+ 

  2.611 2.328 

43
+ 

2.864 3.399 2.650 

51
+ 

 3.675  3.485 3.064 

63
+ 

  4.276 3.572 

71
+
   4.388 3.825 

 

4.1.7 
94

Zr-isotope 

     The values of the low-lying positive parity states of 
94

Zr-isotope calculated by IBM-1 and 

IBM-2 models have been compared with the experimental data [92] as shown in the table (4-9). 

The available data are limited to   
    

    
        

 ; both IBM-1 and IBM-2 achieved good 
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fitting for   
 and    

  , while both are slightly pushing up   
  t and pulling down   

 . In the beta 

band experimental data for   
    

        
  are 1.301, 1.672, and 2.330 MeV, both IBM-1 and 

IBM-2 pushed up   
 and   

 by small amount, but both fitted   
  nicely. The experimental energy 

value for gamma band for states   
    

        
  are 2.152, 2.508, and 2.861 MeV, both IBM-1 

and IBM-2 nearly best fit for   
       

 states, but both together are pushed up for    
  . Our 

result compared to the ref [42,43,50] is very good in both IBM-1and IBM-2. 

Table (4-9): the comparison between the calculated and the experimental energy levels 

values of (
94

zr)  

 

J
+
 

Energy levels (Mev) 

EXP.       Ref.[92] IBM-1 IBM-2 

01
+ 

0.0 0.0 0.0 

21
+ 

0.919 0.901 0.863 

41
+ 

1.470 1.853 1.746 

61
+ 

3.143 2.860 2.849 

81
+ 

3.632 3.928 3.576 

02
+ 

1.301 1.638 1.733 

22
+ 

1.672 1.703 1.753 

42
+ 

2.330 2.621 2.660 

62
+ 

  3.596 3.589 

23
+ 

2.152 2.473 2.268 

31
+ 

2.508 2.530 2.662 

43
+ 

2.861 3.340 3.170 

51
+ 

  3.451 3.442 

63
+ 

  4.273 4.080 

71
+
   4.428 4.167 

 

4.1.8 
96

Zr-isotope 

     The results of 
96

Zr-isotope calculated by IBM-1 and IBM-2 models have been compared with 

the experimental data [93] as shown in the table (4-10). The available data are limited to 

  
    

    
        

 ; both IBM-1 and IBM-2 pulling down the   
 and    

 , and nearly producing 
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best fit for   
        

 . In the beta band both IBM-1 and IBM-2 pushing up   
 , but showing 

good fit for   
    

        
  . The experimental energy value for gamma band for 

states   
    

    
    

         
  are 2.668, 3.082, 3.309, 4.430, and 5.066 MeV, both IBM-1 and 

IBM-2 are fitting well the   
 state, but both pushed    

        
  states higher, while the 

  
         

  states are slightly pushed up by IBM-1, and slightly pulled down by IBM-2. Our 

result compared to the ref [42,43] are good fitted in both IBM-1and IBM-2. 

Table (4-10): the comparison between the calculated and the experimental energy levels 

values of (
96

zr)  

 

J
+
 

Energy levels (Mev) 

EXP.       Ref.[93] IBM-1 IBM-2 

01
+ 

0.0 0.0 0.0 

21
+ 

1.750 1.284 1.277 

41
+ 

2.750 2.322 2.407 

61
+ 

3.483 3.374 3.443 

81
+ 

4.390 4.622 4.475 

02
+ 

1.581 1.828 1.998 

22
+ 

2.226 2.179 2.349 

42
+ 

2.857 3.091 2.881 

62
+ 

3.772 4.052 3.578 

23
+ 

2.668 2.464 2.609 

31
+ 

  3.235 3.043 

43
+ 

3.082 3.590 3.378 

51
+ 

3.309 3.892 3.501 

63
+ 

4.430 4.594 3.858 

71
+
 5.066 5.269 4.262 

 

4.1.9 
98

Zr-isotope 

     The values of the low-lying positive parity states of 
98

Zr-isotope calculated by IBM-1 and 

IBM-2 models have been compared with the experimental data [94] as shown in the table (4-

11). These available data are limited to    
    

    
        

 . Both IBM-1 and IBM-2 nicely 
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fitted ground state band and the beta band states. The experimental energy values of gamma 

band for states   
         

  are 1.744, 3.271 MeV, both IBM-1 and IBM-2 fitted nicely the 

  
 state, but both are pulling down   

  state by small amount, schematically not bad result for 

other states. Our results in compare to the ref [42,43] are reasonable in both IBM-1and IBM-2. 

Table (4-11): the comparison between the calculated and the experimental energy levels 

values of (
98

zr)  

 

J
+
 

Energy levels (Mev) 

EXP.       Ref.[94] IBM-1 IBM-2 

01
+ 

0.0 0.0 0.0 

21
+ 

1.222 0.814 0.943 

41
+ 

1.843 1.580 1.539 

61
+ 

2.491 2.363 2.384 

81
+ 

3.217 3.260 3.280 

02
+ 

0.854 1.195 1.136 

22
+ 

1.590 1.595 1.596 

42
+ 

2.277 2.315 2.461 

62
+ 

3.117 3.222 3.359 

23
+ 

1.744 1.964 1.771 

31
+ 

 2.502 2.346 

43
+ 

3.271 2.814 2.534 

51
+ 

   3.235 3.065 

63
+
   3.617 3.366 

71
+
   3.997 3.828 

 

4.1.10 
100

Zr-isotope 

     The values of the low-lying positive parity states of 
100

Zr-isotope calculated by IBM-1 and 

IBM-2 models have been compared with the experimental data [95] as shown in the table (4-

12). It is clear from the table that the available data are limited to   
    

    
        

  which are 

located at 0.213, 0.565, 1.062, and 1.687 MeV respectively; both IBM-1 and IBM-2 are fitting 

well these states in G.S. band. In the beta band experimental data for   
    

    
        

  are 
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0.829, 0.879, 1.294, and 1.856 MeV, both IBM-1 and IBM-2 reproduced acceptably good fit for 

  
    

         
 states, but the   

  is pushed up by IBM-1 and pulled down by IBM-2 by small 

amount. The experimental energy values for gamma band for states   
    

         
  are 1.196, 

1.295, and 2.480 MeV,  IBM-1 and IBM-2 predict best fit for these states. Our result compared 

to the ref [42,43,52] and look good in both IBM-1and IBM-2. 

Table (4-12): the comparison between the calculated and the experimental energy levels 

values of (
100

zr)  

 

J
+
 

Energy levels (Mev) 

EXP.       Ref.[95] IBM-1 IBM-2 

01
+ 

0.0 0.0 0.0 

21
+ 

0.213 0.213 0.242 

41
+ 

0.565 0.604 0.620 

61
+ 

1.062 1.162 1.124 

81
+ 

1.687 1.876 1.737 

02
+ 

0.829 0.543 0.716 

22
+ 

0.879 0.891 0.720 

42
+ 

1.294 1.404 0.932 

62
+ 

1.856 2.055 1.405 

23
+ 

1.196 1.126 0.991 

31
+ 

1.295 1.409 1.195 

43
+ 

  1.830 1.290 

51
+ 

   2.140 1.616 

71
+
                     2.480   2.723 2.150 

 

4.1.11 
102

Zr-isotope 

     The values of the low-lying positive parity states of 
102

Zr-isotope calculated by IBM-1 and 

IBM-2 models have been compared with the experimental data [96] as shown in the table (4-

13). The available data are limited to   
    

    
        

 ; both IBM-1 and IBM-2 nearly 

produced best fit for these states in ground state band and in the beta band for 

  
    

    
        

   states. The experimental energy value for gamma band for 
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states   
    

    
    

         
  are 1.211, 1.242, 1.538, 1.829 and 2.925 MeV, both IBM-1 and 

IBM-2 fitted   
    

        
  states nicely, but   

   in both IBM-1 and IBM-2 is pushed up by 

small amount, while both pulled down the   
  state. Our result in compare to the ref [42,51] is  

good in both IBM-1and IBM-2. 

 

Table (4-13): the comparison between the calculated and the experimental energy levels 

values of (
102

zr)  

 

J
+
 

Energy levels (Mev) 

EXP.       Ref.[96] IBM-1 IBM-2 

01
+ 

0.0 0.0 0.0 

21
+ 

0.152 0.140 0.142 

41
+ 

0.478 0.448 0.468 

61
+ 

0.965 0.914 0.945 

81
+ 

1.595 1.529 1.581 

02
+ 

0.895 0.904 0.877 

22
+ 

1.036 0.985 0.910 

42
+ 

1.387 1.354 1.112 

62
+ 

1.653 1.861 1.511 

23
+ 

1.211 1.183 1.226 

31
+ 

1.242 1.197 1.412 

43
+ 

1.538 1.625 1.618 

51
+ 

   1.658 1.868 

63
+ 

1.829  2.220 2.005 

71
+
 2.925  2.265 2.570 

 

4.1.12 
104

Zr-isotope 

       The values of the low-lying positive parity states of 
104

Zr-isotope calculated by IBM-1 and 

IBM-2 models have been compared with the experimental data [97] as shown in the table (4-

14). It is clear from the table that the available data are limited to 

  
    

    
     

      
      

         
   states are 0.139, 0.452, 0.926, 1.550, 2.315, 3.210, and 
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4.224 MeV, are well reproduced by both IBM-1 and IBM-2. The G-band, beta band and gamma 

band are well reproduced by both IBM-1 and IBM-2 in compare with ref [41], and best 

reproduce the G-band if compared to ref [42]. 

 

Table (4-14): the comparison between the calculated and the experimental energy levels 

values of (
104

zr)  

 

J
+
 

Energy levels (Mev) 

EXP.       Ref.[97] IBM-1 IBM-2 

01
+ 

0.0 0.0 0.0 

21
+ 

0.139 0.141 0.140 

41
+ 

0.452 0.450 0.471 

61
+ 

0.926 0.913 0.950 

81
+ 

1.550 1.522 1.563 

101
+ 

2.315  2.271 2.316 

121
+ 

3.210  3.155 3.231 

141
+ 

 4.224 4.171 4.346 

22
+ 

  0.745 0.955 

31
+ 

  0.949 1.246 

42
+ 

  1.113 1.370 

51
+ 

  1.400 1.785 

62
+ 

   1.613 1.886 

71
+ 

   1.995 2.295 

02
+ 

   0.848 1.094 

23
+ 

   1.133 1.389 

43
+ 

   1.517 1.769 

63
+
    2.093 2.222 

 

4.1.13 
106

Zr-isotope 

     The values of the low-lying positive parity states of 
106

Zr-isotope calculated by IBM-1 and 

IBM-2 models have been compared with the experimental data [98,99,100] as shown in the 

table (4-15). It is clear from the table that the available data are limited to   
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states are 0.152, 0.477, 0.946, and 1.572 MeV, its best reproduced by both IBM-1 and IBM-2. 

The experimental data of   
  state is 0.607 MeV. The G-band, beta band and gamma band are 

well reproduced by both IBM-1 and IBM-2 if compared with ref [41], and best reproduce the G-

band if compared to ref [44]. 

Table (4-15): the comparison between the calculated and the experimental energy levels 

values of (
106

zr)  

 

J
+
 

Energy levels (Mev) 

EXP.       Ref.[98,99,100] IBM-1 IBM-2 

01
+ 

0.0 0.0 0.0 

21
+ 

0.152 0.154 0.114 

41
+ 

0.477 0.483 0.455 

61
+ 

0.946 0.971 0.950 

81
+ 

1.572 1.609 1.612 

101
+ 

   2.390 2.433 

121
+ 

   3.308 3.431 

141
+ 

   4.360 4.621 

22
+ 

 0.607 0.794 0.888 

31
+ 

  1.028 1.160 

42
+ 

  1.192 1.284 

51
+ 

  1.511 1.669 

62
+ 

   1.724 1.880 

71
+ 

   2.139 2.347 

02
+ 

   0.827 1.001 

23
+ 

   1.145 1.294 

43
+ 

   1.592 1.682 

63
+
    2.204 2.141 

 

4.1.14 
108

Zr-isotope 

     The values of the low-lying positive parity states of 
108

Zr-isotope calculated by IBM-1 and 

IBM-2 models have been compared with the experimental data [98,99,101] as shown in the 

table (4-16). The available data are limited to   
    

    
        

   states they have been nicely 
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reproduced by  IBM-1 and IBM-2. The experimental data of   
    

    
        

  states are 0.604, 

0.947, 0.947, and 1.725 MeV, in gamma band are well reproduced in both IBM-1 and IBM-2. 

Also the experimental data of   
   in beta band with 0.948 MeV is good fitted by both IBM-1 

and IBM-2. All bands are finely produced by both IBM-1 and IBM-2 in compare with ref [41]. 

Table (4-16): the comparison between the calculated and the experimental energy levels 

values of (
108

zr)  

 

J
+
 

Energy levels (Mev) 

EXP.       Ref.[98,99,101] IBM-1 IBM-2 

01
+ 

0.0 0.0 0.0 

21
+ 

0.174 0.170 0.141 

41
+ 

0.522 0.516 0.480 

61
+ 

1.000 1.021 0.990 

81
+ 

1.642 1.675 1.676 

101
+ 

   2.470 2.559 

121
+ 

   3.402 3.661 

141
+ 

   4.467 4.953 

22
+ 

 0.604 0.748 0.646 

31
+ 

0.947  1.018 0.936 

42
+ 

 0.947 1.173 1.046 

51
+ 

  1.524 1.379 

62
+ 

  1.725 2.075 1.607 

71
+ 

   2.172 1.936 

02
+ 

   0.760 0.719 

23
+ 

0.948   1.119 0.908 

43
+ 

   1.572 1.156 

63
+
    2.208 1.630 
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Energy (MeV)                                                                  

        

Figure (4-2): a comparison between the experimental low –lying positive parity states in 
80

Zr [86]. With those obtained by IBM-1 and IBM-2 for ground, gamma, and beta bands. 

Energy (MeV)                                                            

                  

Figure (4-3): a comparison between the experimental low –lying positive parity states in 
82

Zr [87] 

with those obtained by IBM-1 and IBM-2 for the ground, gamma, and beta   bands. 
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Energy (MeV) 

 

Figure (4-4): a comparison between the experimental low –lying positive parity states in 
84

zr [88] with those obtained by IBM-1 and IBM-2 for ground, gamma, and beta bands. 

Energy (MeV) 

 

Figure (4-5): a comparison between the experimental low –lying positive parity states in 
86

zr [89] with those obtained by IBM-1 and IBM-2 for ground, gamma, and beta   bands. 
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Energy (MeV) 

 

Figure (4-6): a comparison between the experimental low –lying positive parity states in 
88

zr [90] with those obtained by IBM-1 and IBM-2 for ground, gamma, and beta   bands 

 

 

Energy (MeV) 

 

Figure (4-7): a comparison between the experimental low –lying positive parity states in 
92

zr [91] with those obtained by IBM-1 and IBM-2 for ground, gamma, and beta  bands. 
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Energy (MeV) 

 

Figure (4-8): a comparison between the experimental low –lying positive parity states in 
94

zr [92] with those obtained by IBM-1 and IBM-2 for ground, gamma, and beta   bands. 

 

Energy (MeV) 

 

Figure (4-9): a comparison between the experimental low –lying positive parity states in 
96

zr [93] with those obtained by IBM-1 and IBM-2 for  ground, gamma, and beta   bands. 
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Energy (MeV) 

 

Figure (4-10): a comparison between the experimental low –lying positive parity states in 
98

zr [94] with those obtained by IBM-1 and IBM-2 for ground, gamma, and beta bands. 

 

Energy (MeV) 

 

Figure (4-11): a comparison between the experimental low –lying positive parity states in 
100

zr [95] with those obtained by IBM-1 and IBM-2 for  ground, gamma, and beta   bands. 
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Energy (MeV) 

 

Figure (4-12): a comparison between the experimental low –lying positive parity states in 
102

zr [96] with those obtained by IBM-1 and IBM-2 for ground, gamma, and beta   bands 
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Figure (4-13): a comparison between the experimental low –lying positive parity states in 
104

zr [97] with those obtained by IBM-1 and IBM-2 for ground, gamma, and beta   bands 
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Energy (MeV) 

 

Figure (4-14): a comparison between the experimental low –lying positive parity states in 
106

zr [98,99,100] with those obtained by IBM-1 and IBM-2 for ground , gamma, and beta   

bands 

Energy (MeV) 

 

Figure (4-15): a comparison between the experimental low –lying positive parity states in 
108

zr [98, 99, 101] with those obtained by IBM-1 and IBM-2 for ground, gamma, and beta   

bands 
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        The energy ratios (
   

 

   
  , (

   
 

   
  , and (

   
 

   
    of the selected Zr-isotopes, has been calculated in 

the frame work of IBM-1, together with their corresponding experimental values are plotted 

respectively against the neutron numbers of Zr-isotopes and displayed in figures (4-16), (4-17), 

and (4-18). And the figures show that the Zr-isotopes evidence are considering as vibrational, 

rotational, and gamma soft symmetries. Generally the IBM-1 calculations of the values of above 

ratios are agree with the experimental energy ratios values. 

     
   

 

   
  

 

Figure (4-16): experimental and calculated values of the energy ratios 
   

 

   
   as a function of 

neutron number for 
80-108

zr isotopes. 
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Figure (4-17): Experimental and calculated values of the energy ratios 
   

 

   
 

 
as a function of 

neutron number for 
80-108

zr isotopes. 

 

   
 

   
  

 

Figure (4-18): Experimental and calculated values of the energy ratios 
   

 

   
  as a function of 

neutron number for 
80-108

zr isotopes. 
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  In figure (4-19) the calculated IBM-1 and IBM-2 energy values of the ground band have been 

plotted as a function of the neutron numbers of 
80-108

Zr-isotope. In figures (4-19a), (4-19b), and 

(4-19c) the energies for some selected states of the ground band, such as   
 ,   

 , and   
   

respectively are well fitted in both IBM-1 and IBM-2. 
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Figure (4-19): A comparison between the calculated energy values of the IBM-1 and IBM-

2 and those of experimental data in the 
80-108

Zr-isotopes for the ground band of (a)   
  state 

(b)   
  state (c)   

  state.  

     

 In figure (4-20) the calculated IBM-1 and IBM-2 energy values of the beta band have been 

plotted as a function of the neutron numbers of 
80-108

Zr-isotope. In figures (4-20a), (4-20b), and 

(4-20c) the energies for some selected states of beta band, such as   
 ,   

 , and   
   respectively 

are well fitted in both IBM-1 and IBM-2, and with increasing the neutron number both IBM-1 

and IBM-2 are more acceptable result can be reproduced.  
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Figure (4-20): A comparison between the calculated energy values of the IBM-1 and IBM-

2 and those of experimental data in the 
80-108

Zr-isotopes for the beta band of (a)   
  state 

(b)   
  state (c)   

  state.  

 

In the figure (4-21) the calculated IBM-1 and IBM-2 energy values of the gamma band have 

been plotted as a function of the neutron numbers of 
80-108

Zr-isotope. In figures (4-21a), (4-21b), 

(4-21c), and (4-21d) the energies for some selected states of the gamma band, such as    
 ,   

 , 

  
  , and   

  respectively are well best fitting in both IBM-1 and IBM-2, and with increasing the 
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neutron number both IBM-1 and IBM-2 are more acceptable result can be reproduced, in other 

hand we can say that the IBM-1 can reproduced the best result in some states and with 

increasing the neutron numbers compared to the IBM-2. 
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Figure (4-21): A comparison between the calculated energy values of the IBM-1 and IBM-

2 and those of experimental data in the 
80-108

Zr-isotopes for the gamma band of (a)   
  state 

(b)   
  state (c)   

  state (d)   
 .  

      From the resulting parameters that have been used in the calculation of IBM-2 which have 

been listed in table (4-2), one may conclude that the main features on nuclei are determined by 

the parameters (  ,  ,    , and    ). The parameters which have a great effect are plotted against 

the neutron numbers in 
80-108

Zr-isotopes and presented in figures (4-22) and (4-23). Figure (4-

22) shows (  ) as a function of the neutron numbers, and it is increasing and decreasing between 

80
Zr and 

86
Zr, and from 

88
Zr starts to increasing and then nearly be constant until 

98
Zr, then after 

increasing the neutron numbers from 
100

Zr to 
108

Zr the (  ) is decreasing and approaching  zero. 

It is clear that     in the figure (4-23) has same behavior.  

 

Figure (4-22): Variation of the parameter ɛd with the neutron numbers in 
80-108

zr isotopes 

for IBM-2. 
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Figure (4-23): Variation of the parameter K with the neutron numbers in 
80-108

zr isotopes 

for IBM-2. 

 

4.2 Mixed symmetry states  

     In the IBM-2 model, distinctions between neutron (v) and proton (π) bosons are produced, 

and can be reproduce all the result of IBM-1, but in addition contains extra states of what so 

called mixed symmetry states. These states are not totally symmetric in (sd) space and are 

allowed in IBM-2 because of the extra (v π) degree of freedom. A sensitive indication of mixed 

symmetry states description is due to the percentage of the F-spin contribution. Where F=
 

 
 for 

bosons with Fmax = 
     

 
 

 

 
. Since states with maximum F-spin are symmetric. It should be 

remarked that states with Fmax= 
 

 
 lie lowest in energy followed by F= 

 

 
  , 

 

 
  , … etc., 

where the separation between states of mixed symmetry are determined by the Majorana terms. 

Table (4-17) shows the percentages of F-SPIN contribution in Zr- isotopes, some states in both 

three bands are fully symmetric for all Zr-isotopes such as   
 state, but in other hand   

 is a 

mixed symmetry state without e for all isotopes Zr
96

, is not symmetric. The   
 state also is 

symmetric for all isotopes without 
88

Zr, 
100

Zr, and 
102

Zr are mixed symmetry in   
  state. In the 

  
  state vice versa all isotopes are mixed symmetry without 

88
Zr and 

102
Zr are full symmetry, 

and 
100

Zr also near mixed symmetry. In the   
  state 

88
Zr,

 92
Zr, 

96
Zr, 

100
Zr, and 

108
Zr are mixed 
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symmetry, and 
96

Zr is not symmetric, all other isotopes are full symmetric. In   
  state 

94
Zr is 

full symmetric, 
104

Zr and 
106

Zr near symmetric, and 
100

Zr is not symmetric, but all other isotopes 

are mixed symmetry. 

Table (4-17): the percentages of F-spin contribution in Zr-isotopes for states that have the 

mixed symmetry characters. 

 

isotopes 

F-spin %100 

21
+ 

22
+ 

23
+
   

    
    

  

Zr
80 %98.7 %97.7 %68.1 %64.7 %96 %79 

Zr
82 %97.8 %95.6 %76.1 %60.7 %92.2 %73.4 

Zr
84 %95.2 %88.5 %61.1 %57.9 %86.9 %70.7 

Zr
86 %90.7 %82.6 %64.9 %54.9 %86.3 %55.1 

Zr
88 %100 %50.9 %99.2 %50.0 %50 %50.2 

Zr
92 %100 %99.1 %50.9 %50 %50 %50.7 

Zr
94 %100 %100 %55.8 %55.6 %99.9 %100 

Zr
96 %99.6 %84.5 %70.7 %28.2 %43.5 %70.6 

Zr
98 %99.9 %99.5 %64.4 %63.5 %67.7 %63.9 

Zr
100 %96.9 %64.6 %79 %61.6 %68.7 %43.7 

Zr
102 %98 %68.5 %92.9 %66.1 %89.7 %52.2 

Zr
104 %96.6 %95.6 %75.2 %68.4 %93.8 %85.1 

Zr
106 %96.5 %94.1 %77.1 %70 %92.2 %81.3 

Zr
108 %92.8 %80.1 %69.3 %64.2 %78.3 %63.4 

  

     Figures (4-24 and 4-25) are taken as an example to study the influence of the Majorana 

parameters ξ1, ξ2 and ξ3 on the mixed symmetry states or those contained mixed symmetry 

components, and some isotopes are taken for studying the affected the Majorana terms 

parameter. Figure (4-24a,b) shows that the 

M1 = 

11 in 
104

Zr and 
108

Zr   levels is strongly affected 

by 1 , show that 

11  state is mixed symmetry for both isotopes, and figure(4-24c,d) shows that 
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

M3  
102

Zr and 
106

Zr  levels depends on the 3 ,. The influence of 2  parameter is shown in figure 

(4-25a,b), where it  strongly effects the energies of all the levels considered to have a mixed 

symmetry components in 
102

Zr and 
108

Zr   respectively and specially the 2
+
 states. One of the 

important features is where two or more of states share the characters of mixed-symmetry, and 

that the case of 

22 and 

32 . With chosen values of 2 , State 

22  is effected by 2  and carries 

totally or partially the properties of MS, and as the values of 2  is increased such properties 

starts to  be transferred to 

32 . These characters in  

22  states are less significant than that in 

32  

states, which can be seen in Figures (4-25a, and 4-25b) for the
102

Zr and 
108

Zr    respectively.  

 

Figure (4-24 a): The change of the level energy in 
104

Zr as a function of ξ1.  
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Figure (4-24 b): The change of the level energy in 
108

Zr as a function of ξ1. 

 

 

Figure (4-24 c): The change of the level energy in 
102

Zr as a function of ξ3. 
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Figure (4-24 d): The change of the level energy in 
106

Zr as a function of ξ3. 

 

 

Figure (4-25 a): The change of the level energy in 
102

Zr as a function of ξ2. 
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Figure (4-25 b): The change of the level energy in 
108

Zr as a function of ξ2. 

 

 

4.3 Electromagnetic properties: 

4.3.1 BE(2) transition properties  

     The boson E2 operator in IBM-1, equation (2-26) and in IBM-2, equation (2-134), have been 

used for calculating the E2 transition rates and the quadrupole moments, for the low- lying 

excited states of the considered Zr-isotopes. In the principle that the value of the effective 

charge ( 2 ) of the IBM-1 was determined by normalizing to the experimental data 

)02;2( 11

 EB of each isotopes (by using equation (2-65)). While in IBM-2 the values of e

and e in the present work are important and changed for each isotopes.  
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  In Tables (4-18) to (4-31) the calculated results of the IBM-1 and IBM-2 and the experimental 

data for B(E2; fi jj  ) transitions in units of ( 22be ) are compared. The data of )02;2( 11

 EB

, )24;2( 11

 EB and )22;2( 12

 EB  transitions are plotted as a functions of neutron number 

of 
80-106

Zr-isotopes in figures (4-26) to (4-29). As the neutron number is increasing the 

experimental )02;2( 11

 EB  changes increase and decrease, figure (4-26) which are in very 

good agreement with IBM-1 and IBM-2 for all isotopes, while in figure (4-27) sometime the 

IBM-2 results agree with experimental data for the transitions )24;2( 11

 EB  22be  for 

example when N=44,52,60 and sometime IBM-1 agrees with the experimental data for example 

when N=46,52, and some time both IBM-1and IBM-2 are nearest fit like N=92, and in 

somewhere both together are far away from experimental data like N=46,54. Figure (4-27) 

shows that both IBM-1 and IBM-2 results are acceptable or expectant since don’t have 

experimental data for these transitions. The other transitions haven’t experimental data, except 

N=52 have the value of transition          
    

   ,         
    

   both IBM-1and IBM-2 

give us acceptable results, and N=54, have the value of transition         
    

   also IBM-1 

and IBM-2 give us the best nearest results.  

     The ratio of 
)02;2(

)24;2(

11

11









EB

EB
 was calculated and compared with those of experimental data 

and displayed.  In the figure (4-28) show that N= 44 IBM-2 nearest fit than IBM-1, but N=46 

both IBM-1 and IBM-2 are far away, also N=48,52 both IBM-1 and IBM-2 are fitted, but when 

N=60 IBM-2  are the best fit than the IBM-2. The quadrupole moments of the first excited 

12

states in
  80-108

Zr-isotopes are also studied in this work and presented in Tables (4-18) to (4-31) 

have been calculated by using (IBM-1 and IBM-2) models.  
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Table (4-18): The  experimental B ( E2; Ji  →  Jf ) values , in the units (e
2
b

2
) ,and the 

quadruple moments ,in the unit of (e.b) ,for  
80

zr isotope are compared with those obtained 

by IBM-1  and IBM-2  results . the effective charges are taken as ( α2 = 0.17624 e.b ) in the 

IBM-1  and (ev =0.175 , eπ =0.174  ) e.b in the IBM-2 

 

Ji→Jf 

B ( E2; Ji  →  Jf ) EXP. 

Ref.[102,103,104,105,106] 

B ( E2; Ji  →  Jf ) 

IBM-1 

B ( E2; Ji  →  Jf ) 

IBM-2 

   21
+
→01

+ 
0.760 0.760 0.761 

41
+
→21

+ 
 1.2303 1.073 

61
+
→41

+ 
 1.4465 1.174 

21
+
→ 

 
02

+ 
 0.1298 0.3235 

22
+
→21

+ 
 0.3401 0.7345 

42
+
→21

+ 
 0.0002 0.0026 

42
+
→22

+ 
 0.5307 0.3455 

23
+
→22

+ 
 0.1519 0.0115 

Q 21
+ 

 - 2.1722 - 1.274 

 

 

Table (4-19): The  experimental B ( E2; Ji  →  Jf ) values , in the units (e
2
b

2
) ,and the 

quadruple moments ,in the unit of (e.b) ,for  
82

zr isotope are compared with those obtained 

by IBM-1  and IBM-2  results . the effective charges are taken as ( α2 = 0.23794 e.b ) in the 

IBM-1  and (ev = 0.1833 , eπ = 0.17 ) e.b in the IBM-2 

 

Ji→Jf 

B ( E2; Ji  →  Jf ) EXP.        

Ref.[102,103,104,105,106] 

B ( E2; Ji  →  Jf ) 

IBM-1 

B ( E2; Ji  →  Jf ) 

IBM-2 

   21
+
→01

+
 
 

 0.910       0.910 0.911 

41
+
→21

+
  

 
  1.5469 1.2935 

 61
+
→41

+ 
  1.9004 1.3970 

21
+
→ 

 
02

+ 
  0.2286 0.1155 

22
+
→21

+
 
 
 
 

   0.8740 0.6370 

42
+
→21

+
 
 
  

 
 0.0001  0.0055 

 42
+
→22

+
 
 
 
 

  0.7902 0.7551 

23
+
→22

+
 
 
   

 
  0.2576 0.0294 

Q 21
+
 
 

  - 1.9665 - 1.5 
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Table (4-20): The  experimental B ( E2; Ji  →  Jf ) values , in the units (e
2
b

2
) ,and the 

quadruple moments ,in the unit of (e.b) ,for  
84

zr isotope are compared with those obtained 

by IBM-1  and IBM-2  results . the effective charges are taken as ( α2 = 0.18127 e.b ) in the 

IBM-1  and (ev = 0.17, eπ =0.156) e.b in the IBM-2 

 

Ji→Jf 

B ( E2; Ji  →  Jf ) EXP.        

Ref.[88,102,103,104,105,106] 

B ( E2; Ji  →  Jf ) 

IBM-1 

B ( E2; Ji  →  Jf ) 

IBM-2 

   21
+
→01

+
 
 

 0.437 0.437 0.437 

41
+
→21

+
  

 
 0.5157 0.7302 0.5989 

 61
+
→41

+ 
  0.8845 0.6402 

21
+
→ 

 
02

+ 
  0.1070 0.0230 

22
+
→21

+
 
 
 
 

   0.4613 0.4289 

42
+
→21

+
 
 
  

 
 0.0002  0.0042 

 42
+
→22

+
 
 
 
 

  0.3767 0.2119 

23
+
→22

+
 
 
   

 
  0.1153  0.0039 

Q 21
+
 
 

  - 1.2791 - 0.6417 

 

 

Table (4-21): The  experimental B ( E2; Ji  →  Jf ) values , in the units (e
2
b

2
) ,and the 

quadruple moments ,in the unit of (e.b) ,for  
86

zr isotope are compared with those obtained 

by IBM-1  and IBM-2  results . the effective charges are taken as ( α2 = 0.139292 e.b ) in the 

IBM-1  and (ev = 0.1304, eπ =0.11) e.b in the IBM-2 

 

Ji→Jf 

B ( E2; Ji  →  Jf ) EXP.        

Ref.[89,102,103,104,105,106] 

B ( E2; Ji  →  Jf ) 

IBM-1 

B ( E2; Ji  →  Jf ) 

IBM-2 

   21
+
→01

+
 
 

0.157 0.157 0.157 

41
+
→21

+
  

 
0.082 0.2775 0.2306 

 61
+
→41

+ 
 0.3523 0.2410 

21
+
→ 

 
02

+ 
 0.0567 0.0425 

22
+
→21

+
 
 
 
 

 0.2177 0.0834 

42
+
→21

+
 
 
  

 
 0.0004 0.0015 

 42
+
→22

+
 
 
 
 

 0.1670 0.1365 

23
+
→22

+
 
 
   

 
 0.0776 0.0179 

Q 21
+
 
 

 - 0.6921 - 0.6098 
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Table (4-22): The  experimental B ( E2; Ji  →  Jf ) values , in the units (e
2
b

2
) ,and the 

quadruple moments ,in the unit of (e.b) ,for  
88

zr isotope are compared with those obtained 

by IBM-1  and IBM-2  results . the effective charges are taken as ( α2 = 0.13199 e.b ) in the 

IBM-1  and (ev =0.04, eπ =0.131) e.b in the IBM-2 

 

Ji→Jf 

B ( E2; Ji  →  Jf ) EXP.        

Ref.[90,102,103,104,105,106] 

B ( E2; Ji  →  Jf ) 

IBM-1 

B ( E2; Ji  →  Jf ) 

IBM-2 

   21
+
→01

+
 
 

 0.086 0.086 0.086 

41
+
→21

+
  

 
 0.1256 0.1387 0.1405 

 61
+
→41

+ 
  0.1580 0.1684 

21
+
→ 

 
02

+ 
  0.0286 0.0258 

22
+
→21

+
 
 
 
 

   0.1666 0.0005 

42
+
→21

+
 
 
  

  0.0006  0.0025 

 42
+
→22

+
 
 
 
 

  0.0945 0.0905 

23
+
→22

+
 
 
   

 
  0.0286 0.0001 

Q 21
+
 
 

- 0.51 - 0.1494 - 0.2620 

 

Table (4-23): The  experimental B ( E2; Ji  →  Jf ) values , in the units (e
2
b

2
) ,and the 

quadruple moments ,in the unit of (e.b) ,for  
92

zr isotope are compared with those obtained 

by IBM-1  and IBM-2  results . the effective charges are taken as ( α2 = 0.12943 e.b ) in the 

IBM-1  and  (ev =0.04, eπ =0.125) e.b in the IBM-2 

 

Ji→Jf 

B ( E2; Ji  →  Jf ) EXP.        

Ref.[42,50,102,103,104,105,106] 

B ( E2; Ji  →  Jf ) 

IBM-1 

B ( E2; Ji  →  Jf ) 

IBM-2 

   21
+
→01

+
 
 

 0.0789 0.0789 0.0789 

41
+
→21

+
  

 
0.1637 0.1271 0.1288 

 61
+
→41

+ 
 0.3791 0.1440 0.1544 

21
+
→ 

 
02

+ 
 0.0340 0.0270 0.0236 

22
+
→21

+
 
 
 
 

   0.1557 0.1158 

42
+
→21

+
 
 
  

  0.0007  0.0022 

 42
+
→22

+
 
 
 
 

  0.0869 0.0855 

23
+
→22

+
 
 
   

 
  0.0265 0.0024 

Q 21
+
 
 

  - 0.1109 - 0.2529 
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Table (4-24): The  experimental B ( E2; Ji  →  Jf ) values , in the units (e
2
b

2
) ,and the quadruple 

moments ,in the unit of (e.b) ,for  
94

zr isotope are compared with those obtained by IBM-1  and 

IBM-2  results . the effective charges are taken as ( α2 = 0.10369 e.b ) in the IBM-1  and  (ev =0.044, 

eπ =0.11) e.b in the IBM-2 

 

Ji→Jf 

B ( E2; Ji  →  Jf ) EXP.        

Ref.[42,50,102,103,104,105,106] 

B ( E2; Ji  →  Jf ) 

IBM-1 

B ( E2; Ji  →  Jf ) 

IBM-2 

   21
+
→01

+
 
 

 0.0629 0.0629 0.0629 

41
+
→21

+
  

 
 0.0125 0.1052 0.1066 

 61
+
→41

+ 
  0.1268 0.1330 

21
+
→ 

 
02

+ 
 0.0235 0.0215 0.0199 

22
+
→21

+
 
 
 
 

   0.1216 0.0991 

42
+
→21

+
 
 
  

 
 0.0003  0.0002 

 42
+
→22

+
 
 
 
 

  0.0734 0.0675 

23
+
→22

+
 
 
   

 
  0.0233 0.0010 

22
+
→01

+
 
 
   

 
0.0050  0.0010 0.0010 

22
+
→02

+
 
 
   

 
 0.024 0.017 0.0211 

Q 21
+
 
 

  - 0.1318 - 0.2235 

 

Table (4-25): The  experimental B ( E2; Ji  →  Jf ) values , in the units (e
2
b

2
) ,and the quadruple 

moments ,in the unit of (e.b) ,for  
96

zr isotope are compared with those obtained by IBM-1  and 

IBM-2  results . the effective charges are taken as ( α2 = 0.07 e.b ) in the IBM-1  and  (ev =0.0468, eπ 

=0.09 ) e.b in the IBM-2 

 

Ji→Jf 

B ( E2; Ji  →  Jf ) EXP.        

Ref.[102,103,104,105,106] 

B ( E2; Ji  →  Jf ) 

IBM-1 

B ( E2; Ji  →  Jf ) 

IBM-2 

   21
+
→01

+
 
 

 0.0314 0.0314 0.0314 

41
+
→21

+
  

 
  0.0436 0.0469 

 61
+
→41

+ 
  0.0441 0.0415 

21
+
→ 

 
02

+ 
  0.0107 0.0084 

22
+
→21

+
 
 
 
 

   0.0522 0.0471 

42
+
→21

+
 
 
  

  0.0017  0.0 

 42
+
→22

+
 
 
 
 

  0.0274 0.0009 

23
+
→22

+
 
 
   

 
  0.0147 0.0 

22
+
→01

+
 
 
   

  0.000157 0.00012 0.0001 

22
+
→02

+
 
 
   

 
0.021195  0.0450 0.0380 

Q 21
+
 
 

  0.1108 0.0255 
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Table (4-26): The  experimental B ( E2; Ji  →  Jf ) values , in the units (e
2
b

2
) ,and the 

quadruple moments ,in the unit of (e.b) ,for  
98

zr isotope are compared with those obtained 

by IBM-1  and IBM-2  results . the effective charges are taken as ( α2 = 0.15907 e.b ) in the 

IBM-1  and  (ev =0.0526, eπ =0.16) e.b in the IBM-2 

 

Ji→Jf 

B ( E2; Ji  →  Jf ) EXP.        

Ref.[102,103,104,105,106] 

B ( E2; Ji  →  Jf ) 

IBM-1 

B ( E2; Ji  →  Jf ) 

IBM-2 

   21
+
→01

+
 
 

 0.158       0.158 0.158 

41
+
→21

+
  

 
  0.2674 0.2651 

 61
+
→41

+ 
  0.3229 0.3325 

21
+
→ 

 
02

+ 
 0.0264 0.0639 0.0470 

22
+
→21

+
 
 
 
 

   0.1674 0.2043 

42
+
→21

+
 
 
  

 
 0.0203  0.0002 

 42
+
→22

+
 
 
 
 

  0.1900 0.2802 

23
+
→22

+
 
 
   

 
  0.1350 0.0014 

Q 21
+
 
 

  0.6623 -0.5145 

 

 

Table (4-27): The  experimental B ( E2; Ji  →  Jf ) values , in the units (e
2
b

2
) ,and the 

quadruple moments ,in the unit of (e.b) ,for  
100

zr isotope are compared with those 

obtained by IBM-1  and IBM-2  results . the effective charges are taken as ( α2 = 0.19766 

e.b ) in the IBM-1  and  (ev =0.2312, eπ = 0.19) e.b in the IBM-2 

 

Ji→Jf 

B ( E2; Ji  →  Jf ) EXP.        

Ref.[95,102,103,104,105,106] 

B ( E2; Ji  →  Jf ) 

IBM-1 

B ( E2; Ji  →  Jf ) 

IBM-2 

   21
+
→01

+
 
 

1.110 1.110 1.111 

41
+
→21

+
  

 
1.5307 1.7793 1.5372 

 61
+
→41

+ 
1.3593 2.0470 1.3990 

21
+
→ 

 
02

+ 
 0.1707 0.2450 

22
+
→21

+
 
 
 
 

 0.1463 0.0040 

42
+
→21

+
 
 
  

 
 0.0001 0.0409 

 42
+
→22

+
 
 
 
 

 1.1332 1.6644 

23
+
→22

+
 
 
   

 
 0.9956 0.0928 

Q 21
+
 
 

 -2.9137 -2.0106 
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Table (4-28): The  experimental B ( E2; Ji  →  Jf ) values , in the units (e
2
b

2
) ,and the 

quadruple moments ,in the unit of (e.b) ,for  
102

zr isotope are compared with those 

obtained by IBM-1  and IBM-2  results . the effective charges are taken as ( α2 = 0.17594 

e.b ) in the IBM-1  and  (ev =0.2387, eπ =0.178) e.b in the IBM-2 

 

 

Ji→Jf 

B ( E2; Ji  →  Jf ) EXP.        

Ref.[102,103,104,105,106] 

B ( E2; Ji  →  Jf ) 

IBM-1 

B ( E2; Ji  →  Jf ) 

IBM-2 

   21
+
→01

+
 
 

1.350 1.350 1.350 

41
+
→21

+
  

 
 1.9429 1.9365 

 61
+
→41

+ 
 2.1293 2.0490 

21
+
→ 

 
02

+ 
 0.0419 0.0225 

22
+
→21

+
 
 
 
 

 0.0597 0.0006 

42
+
→21

+
 
 
  

 
 0.0001 0.0068 

 42
+
→22

+
 
 
 
 

 0.6831 0.6919 

23
+
→22

+
 
 
   

 
 0.1773 0.1210 

Q 21
+
 
 

 -3.1162 -2.3521 

 

 

Table (4-29): The  experimental B ( E2; Ji  →  Jf ) values , in the units (e
2
b

2
) ,and the 

quadruple moments ,in the unit of (e.b) ,for  
104

zr isotope are compared with those 

obtained by IBM-1  and IBM-2  results . the effective charges are taken as ( α2 = 0.20041 

e.b ) in the IBM-1  and  (ev =0.26175, eπ =0.21) e.b in the IBM-2 

 

Ji→Jf 

B ( E2; Ji  →  Jf ) EXP.        

Ref.[102,103,104,105,106] 

B ( E2; Ji  →  Jf ) 

IBM-1 

B ( E2; Ji  →  Jf ) 

IBM-2 

   21
+
→01

+
 
 

1.958 1.958 1.958 

41
+
→21

+
  

 
 2.8382 2.8107 

 61
+
→41

+ 
 3.1383 3.0428 

21
+
→ 

 
02

+ 
 0.0625 0.0236 

22
+
→21

+
 
 
 
 

 0.1159 0.4481 

42
+
→21

+
 
 
  

 
 0.0000 0.0053 

 42
+
→22

+
 
 
 
 

 0.9560 0.9113 

23
+
→22

+
 
 
   

 
 0.0339 0.1540 

Q 21
+
 
 

 -3.7313 -2.720 
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Table (4-30): The  experimental B ( E2; Ji  →  Jf ) values , in the units (e
2
b

2
) ,and the 

quadruple moments ,in the unit of (e.b) ,for  
106

zr isotope are compared with those 

obtained by IBM-1  and IBM-2  results . the effective charges are taken as ( α2 = 0.17124 

e.b ) in the IBM-1  and  (ev =0.21, eπ =0.1877) e.b in the IBM-2 

 

Ji→Jf 

B ( E2; Ji  →  Jf ) EXP.        

Ref.[102,103,104,105,106] 

B ( E2; Ji  →  Jf ) 

IBM-1 

B ( E2; Ji  →  Jf ) 

IBM-2 

   21
+
→01

+
 
 

1.55 1.5501 1. 551 

41
+
→21

+
  

 
 2.2771 2.2462 

 61
+
→41

+ 
 2.5517 2.4612 

21
+
→ 

 
02

+ 
 0.070 0.0788 

22
+
→21

+
 
 
 
 

 0.1229 0.2695 

42
+
→21

+
 
 
  

 
 0.0000 0.0043 

 42
+
→22

+
 
 
 
 

 0.8023 0.7309 

23
+
→22

+
 
 
   

 
 0.0790 0.0778 

Q 21
+
 
 

 -3.3180 -2.4847 

 

 

Table (4-31): The  experimental B ( E2; Ji  →  Jf ) values , in the units (e
2
b

2
) ,and the 

quadruple moments ,in the unit of (e.b) ,for  
108

zr isotope are compared with those 

obtained by IBM-1  and IBM-2  results . the effective charges are taken as ( α2 = 0.17124 

e.b ) in the IBM-1  and  (ev =0.21, eπ =0.1877) e.b in the IBM-2 

 

Ji→Jf 

B ( E2; Ji  →  Jf ) EXP.        B ( E2; Ji  →  Jf ) 

IBM-1 

B ( E2; Ji  →  Jf ) 

IBM-2 

   21
+
→01

+
 
 

 1.2748 1. 2394 

41
+
→21

+
  

 
 1.9016 1.7913 

 61
+
→41

+ 
 2.1458 1.9403 

21
+
→ 

 
02

+ 
 0.0818 0.1075 

22
+
→21

+
 
 
 
 

 0.1540 0.2134 

42
+
→21

+
 
 
  

 
 0.0000 0.0082 

 42
+
→22

+
 
 
 
 

 0.6956 0.5961 

23
+
→22

+
 
 
   

 
 0.1055 0.0478 

Q 21
+
 
 

 -2.9963 -2.1959 
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B(E2;21
+ 

→ 01
+
) e

2
b

2 

 

Figure (4-26): the B(E2;21
+ 

→ 01
+
) e

2
b

2
 transition for 

80-108
zr – isotopes as a function of 

neutron  number. 

 

B(E2;41
+ 

→ 21
+
) e

2
b

2 

 

Figure (4-27): the B(E2;41
+ 

→ 21
+
) e

2
b

2
 transition for 

80-108
zr – isotopes as a function of 

neutron  number. 
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B(E2;22
+ → 21

+) e2b2 

 

Figure (4-28): the B(E2;22
+ 

→ 21
+
) e

2
b

2
 transition for 

80-108
zr – isotopes as a function of 

neutron  number. 

B(E2;41
+ → 21

+) / B(E2;21
+ → 01

+) 

 

Figure (4-29): the ratios of B(E2;41
+ 

→ 21
+
) / B(E2;21

+ 
→ 01

+
)  for   

80-108
zr – isotopes as a 

function of neutron  number. 
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4.3.2 B (M1) transition properties 

      The boson M1 operator of the IBM-2, have been used for calculating the M1 transitions 

rates and the magnetic dipole moments, for the first excited states 

12 ( 
12

 ). However, these 

properties are influenced by the parameters of g  and g . A fixed values for g =-0.02, 

changed value for g  shows above the tables, have been used to produce these properties 

throughout all 
80-108

Zr-isotopes. The comparison between the calculated result for ( 
12

 ) 

moments of the IBM-2 model and those of experimental data are presented in Tables (4-32) to 

(4-45), and there are no experimental data available for B(M1) transitions.   

 

Table (4-32): The B(M1; Ji →Jf) values , in the units of (  
 ), and the magnetic dipole 

moments for the   
  states  ( 

12
 ) in the unit of (μN), for 

80
zr-isotopes obtained by IBM-2 

results . The effective g- charges are taken as gv = -0.02 and gπ = 2.839         

 

Ji →Jf 

B(M1; Ji →Jf) 

EXP. IBM-2 

  
    

   0.4072 

  
    

   1.7556 

  
    

   0.0575 

  12 22   0.0301 

  13 22   3.0222 

  23 22   0.0194 

  11 23   0.013 

  21 23   0.0146 

  31 23   0.0012 

  11 43   0.008 

  12 44   0.1509 


12

   1.0176 
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Table (4-33): The B(M1; Ji →Jf) values , in the units of (  
 ), and the magnetic dipole 

moments for the   
  states  ( 

12
 ) in the unit of (μN), for 

82
zr-isotopes obtained by IBM-2 

results . The effective g- charges are taken as gv= -0.02 and gπ=2.839         

 

Ji →Jf 

B(M1; Ji →Jf) 

EXP. IBM-2 

  
    

   0.4570 

  
    

   1.4665 

  
    

   0.0832 

  12 22   0.0123 

  13 22   1.7126 

  23 22   0.0573 

  11 23   0.000 

  21 23   0.0051 

  11 43   0.0013 


12

   0.6889 

 

Table (4-34): The B(M1; Ji →Jf) values , in the units of (  
 ), and the magnetic dipole 

moments for the   
  states  ( 

12
 ) in the unit of (μN), for 

84
zr-isotopes obtained by IBM-2 

results . The effective g- charges are taken as gv= -0.02 and gπ = 2.839      

    

 

Ji →Jf 

B(M1; Ji →Jf) 

EXP. [88] IBM-2 

  
    

   0.4072 

  
    

   1.7556 

  
    

   0.0575 

  12 22   0.0301 

  13 22   3.0222 

  23 22   0.0194 

  11 23   0.013 

  21 23   0.0146 

  11 43   0.008 


12

  0.96 0.96 
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Table (4-35): The B(M1; Ji →Jf) values , in the units of (  
 ), and the magnetic dipole 

moments for the   
  states  ( 

12
 ) in the unit of (μN), for 

86
zr-isotopes obtained by IBM-2 

results . The effective g- charges are taken as gv= -0.02 and gπ = 2.995 

 

Ji →Jf 

B(M1; Ji →Jf) 

EXP.[89] IBM-2 

  
    

   0.4339 

  
    

   0.8849 

  
    

   0.3050 

  12 22   0.6839 

  13 22   1.9012 

  23 22   0.6210 

  11 23   0.0956 

  21 23   0.2582 

  11 43   0.3217 


12

  1.0 0.9099 

 

Table (4-36): The B(M1; Ji →Jf) values , in the units of (  
 ), and the magnetic dipole 

moments for the   
  states  ( 

12
 ) in the unit of (μN), for 

88
zr-isotopes obtained by IBM-2 

results . The effective g- charges are taken as gv= -0.02 and gπ=0.725         

 

Ji →Jf 

B(M1; Ji →Jf) 

EXP.[90] IBM-2 

  
    

   0. 0002 

  
    

   0. 0028 

  
    

   0.0907 

  12 22   0.1087 

  13 22   0.0019 

  23 22   0.0070 

  11 23   0.0001 

  21 23   0.0023 

  11 43   0.0448 


12

  0.6 0.6006 
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Table (4-37): The B(M1; Ji →Jf) values , in the units of (  
 ), and the magnetic dipole 

moments for the   
  states  ( 

12
 ) in the unit of (μN), for 

92
zr-isotopes obtained by IBM-2 

results . The effective g- charges are taken as gv= -0.02 and gπ = 0.725         

 

Ji →Jf 

B(M1; Ji →Jf) 

EXP. IBM-2 

  
    

   0. 0002 

  
    

   0 .0927 

  
    

   0.0007 

  12 22   0.0019 

  13 22   0.1086 

  23 22   0.0050 

  11 23   0.0002 

  21 23   0.0760 

  11 43   0.0448 


12

   0.6005 

 

Table (4-38): The B(M1; Ji →Jf) values , in the units of (  
 ), and the magnetic dipole 

moments for the   
  states  ( 

12
 ) in the unit of (μN), for 

94
zr-isotopes obtained by IBM-2 

results . The effective g- charges are taken as gv= -0.02 and gπ = 0.725        

 

Ji →Jf 

B(M1; Ji →Jf) 

EXP. IBM-2 

  
    

   0. 0003 

  
    

   0 .1318 

  
    

   0.0001 

  12 22   0.0000 

  13 22   0.1611 

  23 22   0.0001 

  11 23   0.0000 

  21 23   0.0002 

  11 43   0.0001 


12

   0.5131 
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Table (4-39): The B(M1; Ji →Jf) values , in the units of (  
 ), and the magnetic dipole 

moments for the   
  states  ( 

12
 ) in the unit of (μN), for 

96
zr-isotopes obtained by IBM-2 

results . The effective g- charges are taken as gv= -0.02 and gπ = 0.109         

 

Ji →Jf 

B(M1; Ji →Jf) 

EXP.[93] IBM-2 

  
    

   0. 0000 

  
    

   0 .0000 

  
    

   0.0001 

  12 22   0.0021 

  13 22   0.0031 

  23 22   0.0008 

  11 23   0.0000 

  21 23   0.0001 

  11 43   0.0001 


12

  0.0600 0.0605 

 

Table (4-40): The B(M1; Ji →Jf) values , in the units of (  
 ), and the magnetic dipole 

moments for the   
  states  ( 

12
 ) in the unit of (μN), for 

98
zr-isotopes obtained by IBM-2 

results . The effective g- charges are taken as gv= -0.02 and gπ = 0.109       

 

Ji →Jf 

B(M1; Ji →Jf) 

EXP. IBM-2 

  
    

   0. 0027 

  
    

   0 .0502 

  
    

   0.0004 

  12 22   0.0006 

  13 22   0.0748 

  23 22   0.0012 

  11 23   0.0023 

  21 23   0.0389 

  11 43   0.0273 


12

   -0.0968 
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Table (4-41): The B(M1; Ji →Jf) values , in the units of (  
 ), and the magnetic dipole 

moments for the   
  states  ( 

12
 ) in the unit of (μN), for 

100
zr-isotopes obtained by IBM-2 

results . The effective g- charges are taken as gv= -0.02 and gπ = 1.77         

 

Ji →Jf 

B(M1; Ji →Jf) 

EXP. [95] IBM-2 

  
    

   0.3871   

  
    

   0 .0282 

  
    

   0.0277   

  12 22   0.5639 

  13 22   0.0764 

  23 22   0.1267 

  11 23   0.0001 

  21 23   0.0004   


12

  0.56 0.5602 

 

Table (4-42): The B(M1; Ji →Jf) values , in the units of (  
 ), and the magnetic dipole 

moments for the   
  states  ( 

12
 ) in the unit of (μN), for 

102
zr-isotopes obtained by IBM-2 

results . The effective g- charges are taken as gv= -0.02 and gπ = 1.39       

 

Ji →Jf 

B(M1; Ji →Jf) 

EXP. [96] IBM-2 

  
    

   0.4264   

  
    

   0 .0290 

  
    

   0.0461 

  12 22   0.3557 

  13 22   0.0067 

  23 22   0.0106 

  11 23   0.0011 

  21 23   0.0000   

  31 23   0.0051 


12

  0.44 0.4401 
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Table (4-43): The B(M1; Ji →Jf) values , in the units of (  
 ), and the magnetic dipole 

moments for the   
  states  ( 

12
 ) in the unit of (μN), for 

104
zr-isotopes obtained by IBM-2 

results . The effective g- charges are taken as gv= -0.02 and gπ = 1.39         

 

Ji →Jf 

B(M1; Ji →Jf) 

EXP. IBM-2 

  
    

   0.3528 

  
    

   0 .0971 

  
    

   0.1102 

  12 22   0.0115 

  13 22   0.1082 

  23 22   0.0081 

  11 23   0.0030 

  21 23   0.0017 

  31 23   0.0016 


12

   0.2065 

 

Table (4-44): The B(M1; Ji →Jf) values , in the units of (  
 ), and the magnetic dipole 

moments for the   
  states  ( 

12
 ) in the unit of (μN), for 

106
zr-isotopes obtained by IBM-2 

results . The effective g- charges are taken as gv= -0.02 and gπ = 1.39         

 

Ji →Jf 

B(M1; Ji →Jf) 

EXP. IBM-2 

  
    

   0.4028 

  
    

   0 .0246 

  
    

   0.0873 

  12 22   0.0150 

  13 22   0.0741 

  23 22   0.0138 

  11 23   0.0112 

  21 23   0.0000 

  31 23   0.0024   


12

   0.1332 
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Table (4-45): The B(M1; Ji →Jf) values , in the units of (  
 ), and the magnetic dipole 

moments for the   
  states  ( 

12
 ) in the unit of (μN), for 

108
zr-isotopes obtained by IBM-2 

results . The effective g- charges are taken as gv= -0.02 and gπ = 1.39         

 

Ji →Jf 

B(M1; Ji →Jf) 

EXP. IBM-2 

  
    

   0 .3727 

  
    

   0 .0141 

  
    

   0 .0202 

  12 22   0 .0146 

  13 22   0 .6103 

  23 22   0 .0695 

  11 23   0 .0284 

  21 23   0 .0061 

  31 23   0 .0106 


12

   0 .0179 

 

4.3.3 δ- mixing ratios 

    The δ–mixing ratios of the -transitions from the excited states in 
80-108

Zr-isotopes is also 

calculated in the present work using the following relationship 

)
1

2(
M

E ).)(
1

2(835.0
N

be
M

EE
   

Where E  is the transition energy in (MeV) and )
1

2(
M

E is in units of ( 
   

  
 ) and defined as 

the ratio of the reduced E2 matrix element to the M1 matrix elements. 

      The δ–mixing ratios calculated in the present work which are results of IBM-2 have been 

shown in the Table (4-46) to (4-59), these results were obtained by using same boson effective 

charges e , e for E2 and g , g factors for M1 strengths.   Figure (4-30) shows the variation of 

δ for the group of   122i  ( i  = 2, 3, 4 and 5) transitions and can be seen that both the 

magnitude and sign of  obtained with chosen value of Majorona term 2 = -0.29 which is the 

value obtained from the energy fit for 
106

Zr. 
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Table (4-46): The value of δ–mixing ratio obtained by IBM-2 for the 
80

Zr isotope .The 

IBM-2 results are obtained using the parameters ( e =0.175 eb , e = 0.174 eb ), g = 2.839

N and g = - 0.02 N .  

 

 

 

 

 

 

 

 

 

 

Ei (MeV) 
Transition 

fi JJ   
Eγ(MeV) 

δ-mixing ratios(eb/N) 

IBM-2 

0.985   12 22  0.599 2.46551 

1.934   13 22  1.557 -0.04417 

2.119   14 22  1.733 0.27901 

2.252   15 22  1.866 -0.091357 

1.934   23 22  0.949 -0.60543 

1.586   11 23  1.200 5.84383 

1.586   21 23  0.601 3.7561 

1.586   
    

  0.348 0.8727777 

1.586   
    

  0.533 0.2502842 

1.586   
    

  0.666 16.34244 

2.628   
    

  2.242 -0.1953517 

2.628   
    

  1.643 -0.0287342 

2.628   
    

  0.694 1.343335 

2.628   
    

  0.509 -0.156789 

2.628   
    

  0.376 0.481479 
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Table (4-47): The value of δ–mixing ratio obtained by IBM-2 for the 
82

Zr isotope .The 

IBM-2 results are obtained using the parameters ( e =0.183 eb , e =0.239 eb ), g = 2.839

N and g = - 0.02 N .  

 

 

 

 

 

 

 

 

 

 

 

 

Ei (MeV) 
Transition 

fi JJ   
Eγ(MeV) 

δ-mixing 

ratios(eb/N) 

IBM-2 

1.232   12 22  0.799 5.3219 

2.225 
  13 22  1.792 -0.104313 

2.627   14 22  2.194 0.520509 

2.781 
  15 22  2.348 -0.308158 

2.225 
  23 22  0.993 -0.429784 

1.965   11 23  1.532 -1821.5030 

1.965   21 23  0.733 7.891340 

1.965   
    

  0.260 1.224160 

1.965   
    

  0.662 0.4902483 

1.965   
    

  0.816 -2.373418 

3.192   
    

  2.759 -0.7736616 

3.192   
    

  1.960 -0.01503187 

3.192   
    

  0.967 1.305612 

3.192   
    

  0.565 -0.2280955 

3.192   
    

  0.411 0.2969277 
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Table (4-48): The value of δ–mixing ratio obtained by IBM-2 for the 
84

Zr isotope .The 

IBM-2 results are obtained using the parameters ( e =0.17 eb , e =0.156 eb ), g = 2.839 N

and g = - 0.02 N .  

 

 

 

 

 

 

 

Ei (MeV) 
Transition 

fi JJ   
Eγ(MeV) 

δ-mixing ratios(eb/N) 

IBM-2 

1.037   12 22  0.608 1.829340 

1.637 
  13 22  1.208 -0.02552702 

1.743   14 22  1.314 -1.324562 

2.206 
  15 22  1.777 -0.01460117 

1.637 
  23 22  0.600 -0.06959940 

1.850   11 23  1.421 1.350493 

1.850   21 23  0.813 2.622810 

1.850   
    

  0.213 0.08233342 

1.850   
    

  0.107 0.07387262 

1.850   
    

  0.356 29.243050 

2.420   
    

  1.991 -0.3482842 

2.420   
    

  1.383 -0.02812837 

2.420   
    

  0.783 2.146860 

2.420   
    

  0.677 0.05121828 

2.420   
    

  0.214 -0.4272834 
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Table (4-49): The value of δ–mixing ratio obtained by IBM-2 for the 
86

Zr isotope .The 

IBM-2 results are obtained using the parameters ( e =0.1304 eb , e =0.11 eb ), g = 2.995

N and g = - 0.02 N .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ei (MeV) 
Transition 

fi JJ   
Eγ(MeV) 

δ-mixing ratios(eb/N) 

IBM-2 

1.428   12 22  0.915 0.2667982 

1.714 
  13 22  1.201 -0.1110435 

1.914   14 22  1.401 -0.4773804 

2.549 
  15 22  2.036 -0.4375679 

1.714 
  23 22  0.286 -0.04053773 

2.272   11 23  1.759 0.7120001 

2.272   21 23  0.844 0.5286462 

2.272   
    

  0.558 -0.005777884 

2.272   
    

  0.358 0.2049621 

2.272   
    

  0.277 0.02532076 

2.753   
    

  2.240 -0.2399552 

2.753   
    

  1.325 -0.1402560 

2.753   
    

  1.039 0.4003437 

2.753   
    

  0.839 0.08978785 

2.753   
    

  0.204 0.008834369 
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Table (4-50): The value of δ–mixing ratio obtained by IBM-2 for the 
88

Zr isotope .The 

IBM-2 results are obtained using the parameters ( e =0. 04 eb , e =0.131 eb ), g = 0.725

N and g = - 0.02 N .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ei (MeV) 
Transition 

fi JJ   
Eγ(MeV) 

δ-mixing ratios(eb/N) 

IBM-2 

1.793   12 22  0.903 0.04952659 

1.808 
  13 22  0.918 -6.426427 

2.707   14 22  1.817 64.261670 

2.713 
  15 22  1.823 -0.2337036 

1.808 
  23 22  0.015 -0.001094273 

2.388   11 23  1.498 8.566548 

2.388   21 23  0.595 3.025233 

2.388   
    

  0.580 -0.1105472 

2.388   
    

  0.319 -0.03135578 

2.388   
    

  0.325 0.04473265 

2.291   
    

  1.401 -5.773053 

2.291   
    

  0.498 -1.829359 

2.291   
    

  0.483 0.01897847 

2.291   
    

  0.416 -0.02519172 

2.291   
    

  0.422 -0.1079777 
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Table (4-51): The value of δ–mixing ratio obtained by IBM-2 for the 
92

Zr isotope .The 

IBM-2 results are obtained using the parameters ( e =0. 04 eb , e =0.125 eb ), g = 0.725

N and g = - 0.02 N .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ei (MeV) 
Transition 

fi JJ   
Eγ(MeV) 

δ-mixing ratios(eb/N) 

IBM-2 

1.748   12 22  0.888 5.699437 

1.763 
  13 22  0.903 -0.1585751 

2.623   14 22  1.763 1.408785 

2.647 
  15 22  1.787 88.099220 

1.763 
  23 22  0.012 0.006987436 

2.328   11 23  1.468 7.574205 

2.328   21 23  0.580 0.02739461 

2.328   
    

  0.565 -5.376200 

2.328   
    

  0.295 -0.2776594 

2.328   
    

  0.319 -0.02881465 

2.231   
    

  1.371 -5.088652 

2.231   
    

  0.483 -0.05810928 

2.231   
    

  0.468 3.115738 

2.231   
    

  0.392 0.5311691 

2.231   
    

  0.416 -0.02497165 
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Table (4-52): The value of δ–mixing ratio obtained by IBM-2 for the 
94

Zr isotope .The 

IBM-2 results are obtained using the parameters ( e =0. 044 eb , e =0.11 eb ), g = 0.725

N and g = - 0.02 N .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ei (MeV) 
Transition 

fi JJ   
Eγ(MeV) 

δ-mixing ratios(eb/N) 

IBM-2 

1.753   12 22  0.890 -1.689853E+08 

2.268 
  13 22  1.405 -0.05394498 

2.634   14 22  1.771 0.1807715 

3.151 
  15 22  2.288 -79.538620 

2.268 
  23 22  0.515 -1.352146 

2.662   11 23  1.799 -22.313180 

2.662   21 23  0.909 -16.742700 

2.662   
    

  0.394 3.655371 

2.662   
    

  0.028 -0.3643988 

2.662   
    

  0.489 -0.2542454 

2.640   
    

  1.777 -5.280875 

2.640   
    

  0.887 -0.02394567 

2.640   
    

  0.372 -7.450555 

2.640   
    

  0.006 -0.06170274 

2.640   
    

  0.511 -0.04909090 
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Table (4-53): The value of δ–mixing ratio obtained by IBM-2 for the 
96

Zr isotope .The 

IBM-2 results are obtained using the parameters ( e =0. 0468 eb , e =0.09 eb ), g = 0.109

N and g = - 0.02 N .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ei (MeV) 
Transition 

fi JJ   
Eγ(MeV) 

δ-mixing ratios(eb/N) 

IBM-2 

2.349   12 22  1.072 4.255815 

2.609 
  13 22  1.332 -3.195287 

2.705   14 22  1.428 -13.034730 

3.900 
  15 22  1.623 5.812901 

2.609 
  23 22  0.260 -0.02330888 

3.043   11 23  1.766 3.761372 

3.043   21 23  0.694 3.954921 

3.043   
    

  0.434 -0.1015568 

3.043   
    

  0.338 -0.6457117 

3.043   
    

  0.143 0.1516502 

2.830   
    

  1.553 2.870311 

2.830   
    

  0.481 -0.08794313 

2.830   
    

  0.221 0.3822096 

2.830   
    

  0.125 0.1998432 

2.830   
    

  0.070 0.04755854  
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Table (4-54): The value of δ–mixing ratio obtained by IBM-2 for the 
98

Zr isotope .The 

IBM-2 results are obtained using the parameters ( e =0. 0526 eb , e =0.16 eb ), g = 0.109

N and g = - 0.02 N .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ei (MeV) 
Transition 

fi JJ   
Eγ(MeV) 

δ-mixing ratios(eb/N) 

IBM-2 

1.596   12 22  0.653 -35.914020 

1.771 
  13 22  0.828 -0.2862242 

2.253   14 22  1.310 3.862088 

2.540 
  15 22  1.597 -34.147740 

1.771 
  23 22  0.175 -0.5657341 

2.346   11 23  1.403   11.337900 

2.346   21 23  0.750 -2.643913 

2.346   
    

  0.575 29.769620 

2.346   
    

  0.093 -2.680118 

2.346   
    

  0.194 -0.8363773 

2.292   
    

  1.349 -10.706490 

2.292   
    

  0.696 -0.1230151 

2.292   
    

  0.521 -24.225770 

2.292   
    

  0.034 -0.05422030 

2.292   
    

  0.248 -0.7176009 
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Table (4-55): The value of δ–mixing ratio obtained by IBM-2 for the 
100

Zr isotope .The 

IBM-2 results are obtained using the parameters ( e =0. 2312 eb , e =0.19 eb ), g = 1.648

N and g = - 0.02 N .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ei (MeV) 
Transition 

fi JJ   
Eγ(MeV) 

δ-mixing ratios(eb/N) 

IBM-2 

0.720   12 22  0.484 0.03353068 

0.992 
  13 22  0.756 -0.9954945 

1.149   14 22  0.913 0.2352935 

1.246 
  15 22  1.010 1.711900 

0.992 
  23 22  0.272 -0.1865394 

1.192   11 23  0.956 25.080570 

1.192   21 23  0.472 4.986140 

1.192   
    

  0.200 -1.905698 

1.192   
    

  0.043 -0.6732090 

1.192   
    

  0.054 5.349079 

1.539   
    

  1.303 -0.09050661 

1.539   
    

  0.819 1.929985 

1.539   
    

  0.547 0.6091802 

1.539   
    

  0.390 -0.3323646 

1.539   
    

  0.293 -0.06083475 
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Table (4-56): The value of δ–mixing ratio obtained by IBM-2 for the 
102

Zr isotope .The 

IBM-2 results are obtained using the parameters ( e =0. 2387 eb , e =0.178 eb ), g = 1.39

N and g = - 0.02 N .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ei (MeV) 
Transition 

fi JJ   
Eγ(MeV) 

δ-mixing ratios(eb/N) 

IBM-2 

0.908   12 22  0.766 0.02224118 

1.243 
  13 22  1.101 -4.881112 

1.577   14 22  1.435 0.05617370 

1.658 
  15 22  1.516 1.445071 

1.243 
  23 22  0.335 -0.7882174 

1.412   11 23  1.270 12.417440 

1.412   21 23  0.504 14.256380 

1.412   
    

  0.169 -2.546024 

1.412   
    

  0.165 -2.519345 

1.412   
    

  0.246 -0.4391804 

1.752   
    

  1.610 -0.05685129 

1.752   
    

  0.844 1.998139 

1.752   
    

  0.509 0.1459061 

1.752   
    

  0.175 -0.2716937 

1.752   
    

  0.094 -0.01538062 
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Table (4-57): The value of δ–mixing ratio obtained by IBM-2 for the 
104

Zr isotope .The 

IBM-2 results are obtained using the parameters ( e =0. 26175 eb , e =0.21 eb ), g = 1.39

N and g = - 0.02 N .  

 

 

 

 

 

 

 

Ei (MeV) 
Transition 

fi JJ   
Eγ(MeV) 

δ-mixing ratios(eb/N) 

IBM-2 

0.955   12 22  0.815 4.250752 

1.389 
  13 22  1.249 -0.5118751 

1.852   14 22  1.712 -0.1669035 

1.907 
  15 22  1.767 0.3689441 

1.389 
  23 22  0.434 -1.569667 

1.264   11 23  1.124 9.923706 

1.264   21 23  0.309 8.871681 

1.264   
    

  0.125 1.694591 

1.264   
    

  0.588 76.942990 

1.264   
    

  0.643 0.2765769 

2.309   
    

  2.169 -0.4581255 

2.309   
    

  1.354 -0.3243822 

2.309   
    

  0.920 0.7976437 

2.309   
    

  0.457 0.8771442 

2.309   
    

  0.402 -0.2950890 
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Table (4-58): The value of δ–mixing ratio obtained by IBM-2 for the 
106

Zr isotope .The 

IBM-2 results are obtained using the parameters ( e =0. 21 eb , e =0.1877 eb ), g = 1.39

N and g = - 0.02 N .  

 

 

 

 

 

 

 

 

 

Ei (MeV) 
Transition 

fi JJ   
Eγ(MeV) 

δ-mixing ratios(eb/N) 

IBM-2 

0.888   12 22  0.774 2.733126 

1.294 
  13 22  1.180 -0.4048875 

1.601   14 22  1.487 0.7446577 

1.709 
  15 22  1.595 31.067320 

1.294 
  23 22  0.376 -0.7490517 

1.160   11 23  1.046 4.471070 

1.160   21 23  0.272 115.413300 

1.160   
    

  0.089 1.002137 

1.160   
    

  0.441 1.568506 

1.160   
    

  0.549 -0.8948597 

1.819   
    

  1.705 -0.3919338 

1.819   
    

  0.931 -0.4949175 

1.819   
    

  0.570 0.4231160 

1.819   
    

  0.218 -0.9410841 

1.819   
    

  0.110 0.001133918 
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Table (4-59): The value of δ–mixing ratio obtained by IBM-2 for the 
108

Zr isotope .The 

IBM-2 results are obtained using the parameters ( e =0. 21 eb , e =0.1877 eb ), g = 1.39

N and g = - 0.02 N .  

 

 

 

 

 

 

 

 

 

Ei (MeV) 
Transition 

fi JJ   
Eγ(MeV) 

δ-mixing ratios(eb/N) 

IBM-2 

0.646   12 22  0.505 1.612056 

0.908 
  13 22  0.767 0.06726045 

1.023   14 22  0.891 1.228737 

1.189 
  15 22  1.048 -0.3634193 

0.908 
  23 22  0.262 -0.1810648 

0.936   11 23  0.795 1.830920 

0.936   21 23  0.290 -3.190639 

0.936   
    

  0.028 0.1271712 

0.936   
    

  0.096 0.4352536 

0.936   
    

  0.253 -0.09108128 

1.039   
    

  0.898 -0.2917548 

1.039   
    

  0.393 0.2580431 

1.039   
    

  0.131 -0.5663972 

1.039   
    

  0.016 -0.001844530 

1.039   
    

  0.150 0.1302961  
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Figure (4-30): The multipole mixing ratio δ, of   122i transitions is plotted against ξ2 for 
106

Zr. 
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Chapter five                                                                                          

Conclusions and future works   

5-1 Conclusions  

 It is concluded that the mixed symmetry    
  and   

  levels are affected by the Majorana 

force parameters    and     respectively, while the parameter    affects the energies of 

all levels which are considered to have mixed symmetry character, and it affects strongly 

the 2
+ 

states. 

 The mixed symmetry character of    
  and   

  levels are confined to one level only 

whereas the    
 state may share the mixed symmetry character with its neighboring 

levels and this leads to some difficulties in identifying these states since the sharing 

weakens the mixed symmetry character  over a number of     
  levels.  

 In general, the calculated result of IBM-1 and IBM-2 for B(E2) transitions in all 

considered Zr-isotopes nearly best fit, and show an increase in their values for N= 40 

and 42, then decreasing with the increase in the neutron number until N=58, again the 

values is increasing with increase in the neutron number for most transitions. On other 

hand the calculated values of B(E2) transition are decreasing with the increase in the 

neutron number and approaching the experimental values, like as B(E2;     
 →     

 ). The 

experimental B(E2) values were not always in good agreement throughout all considered 

Zr - isotopes. The calculated electric quadrupole moments for the first excited states 

Q(    
   in Zr – isotopes are in reasonable agreement between IBM-1 and IBM-2 results  

and agree with the available experimental data. 

 The properties of the magnetic dipole operator have been studied only by the framework 

of IBM-2 because of the absence of the M1 transitions in the IBM-1. It is concluded that 
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the properties of M1 operator are exclusively determined by the parameters of    and    

factors, the magnetic dipole moments    
  and there was agreement between the 

calculated and experimental data. 

 The calculated delta mixing ratios using IBM-2 model are reflecting the characteristic of 

initial state as symmetry or mixed symmetry state. It is concluded that the delta mixing 

ratios are very sensitive to the Majorana terms.  

5-2 Future Works 

1- It is interesting to study the odd- even nuclei (isotopes) by using the interacting boson -

fermions model (IBFM) to examine the behaviors of the IBM parameters through the 

isotopes. 

2- Comparison study of Zr isotopes with Ru, Mo and Pb groups of isotopes may be 

beneficial to overcome the lack of experimental data and extrapolate or interpolate the 

descriptions of these nuclei. 
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 الخلاصة

 ,N = 40, 42, 44, 46, 48, 52, 54, 56, 58اىْٞ٘رشّٜٗ  ) ىقذ رٌ دساعخ اىزشمٞت اىْ٘ٗٛ ىْظبئش اىضسمًّ٘ٞ٘ اىزٜ عذدٕب

رٌ دساعخ حذٗد اىزَبثو  .BM-2, IBM-1 )ّظشٝب ظَِ اغبس عَو َّ٘رج اىج٘صّٗبد اىَزفبعيخ )  (68 ,66 ,64 ,62 ,60

رعزجش ّ٘اح اعزخذاً اىطبقخ فٜ اىثبّٞخ ٍزحَظ اىذٗىخ ثبىْغجخ إىٚ اىحبىخ اىَثبسح الأٗىٚ. رٌ اىعث٘س عيٚ اعزجبس ّ٘ٙ أُ رنُ٘ 

1اُ صفبد اىَغز٘ٝبد الأٗغأ راد اىزْبظش اىَخزيػ ٍثو  . SU(3) ٗ ,O(6)اىٚ SU(5)  اّزقبىٞخ فٜ اىَْطقخ 
+

  ,2
+

  ,3
+

  

(  الإزضاصٝخ , SU(5) ,SU(3) ٗ ,O(6)( ىْظبئش اىضسمًّ٘ٞ٘ راد اىزْبظشاد  )IBM-2 اىزٜ اعزخشجذ ث٘اعطخ َّ٘رج  )  

  اىغٞشٍغزقشح عيٚ اىز٘اىٜ قذ دسعذ ثبىزفصٞو. ىقذ ٗجذ ثأُ ٍغز٘ٝبد اىزْبظش اىَخزيػ   اىذٗساّٞخ ٗ جبٍب 
   ,  

رزأثش     

عيٚ مو اىَغز٘ٝبد اىزٜ رحَو خبصٞخ اىزْبظش   ξ2عيٚ اىز٘اىٜ , ثَْٞب ٝؤثش اىَعبٍو     ξ1   ٗξ3ثَعبٍيٜ ق٘ح ٍبج٘ساّب 

2ؤثش ثق٘ح عيٚ ٍغز٘ٝبد ٔ ٝأّ حٞث, اىَخزيػ 
+

  , مَب أّٔ ٝزحنٌ فٜ اىششامخ ثِٞ اىَغز٘ٛ  
2ٗجٞشأّ ٍِ ٍغز٘ٝبد   

+ 
. مَب  

  ٗجذ ثأّٔ خبصٞخ اىزْبظش اىَخزيػ  
   ,  

  رع٘د اىٚ ٍغز٘ٛ ٗاحذ فقػ فٜ مو ّظٞش ثَْٞب اىَغز٘ٛ   
َٝنِ أُ ٝشزشك   

 ثخبصٞخ اىزْبظش اىَخزيػ ٍع جٞشأّ ٍِ اىَغز٘ٝبد.

، ٗرَذ دساعخ خصبئص ٍغز٘ٙ اىطبقخ ٍع رَبثو إٝجبثٜ ٍِ الأسض ٗثٞزب ٗجبٍب اىعصبثبد. IBM-1  ٗIBM-2فٜ إغبس  

ٍِ ريل اىزٜ  IBM-2بده إٝجبثٜ اىَْخفط اىنزة ٗرحغت عيٚ أعبط إغبس ثشنو عبً، ٗأفعو ٍغزْغخخ أغٞبف اىطبقخ رع

IBM-1  فٜ ٍعظٌ اىحبلاد. ٗٝشجع رىل إىٚ دسجخ اىجشٗرُ٘ ّٞ٘رشُٗ اىحشٝخ ٗغٞبة ٕزٓ اىذٗه فٜ َّ٘رجIBM-1 .  ُا

 رعزَذ    E2اُ صفبد اىَؤثش   قذ دسعذ ٗحييذ ّزبئجٖب.  IBM-2, IBM-1  اىصفبد اىنٖشٍٗغْبغٞغٞخ ظَِ اغبس عَو 

 IBM-1فٜ اغبس    α2. ىقذ ٗجذ أُ ىقٌٞ ٍخزيفخ ٍِ IBM-2, IBM-1صشاحخ عيٚ اىشحْبد اىَؤثشح اىَغزخذٍخ فٜ مو ٍِ 

ٍثو  E2ىز٘ىٞذ صفبد    قذ اعزخذٍذ   Zrىنو ّظٞش ٍِ ّظبئش   IBM-2فٜ اغبس      ٗ      ٗمزىل قٌٞ ٍخزيفخ ىنو ٍِ 

(E2)   ٗQ(2
+
ثغجت   IBM-2قذ دسعذ فقػ فٜ اغبس   M1ٍِ ّبحٞخ أخشٙ فأُ صفبد   اىَعْٞخ.  Zrىجَٞع ّظبئش    (

أعطٞذ  .IBM-2فٜ اغبس      ٗ          رعزَذ ث٘ظ٘ح عيٚ  M1, مَب ٗجذ أُ صفبد   IBM-1فٜ  M1غٞبة  اّزقبلاد 

ىز٘ىٞذ صفبد   IBM-2فٜ ريل اىحغبثبد ه     ىنِ قٌٞ ٍخزيفخ ه  ٗ Zr ىجَٞع ّظبئش   (           )قٌٞ ثبثزخ ه  

M1   ٍثوB(M1),          ّغت اىَضج ٗδ(E2/M1)    ًفٜ ٕزٓ اىْظبئش. ىقذ ٗجذّب اىْغجخ اىَئ٘ٝخ ه ثشF  ٗاىزٜ ٍِ خلاىٖب

د ٍِ اىحبلاد اىزٜ ى٘حظذ ثبىْغجخ ىلاّزقبلا    δ(E2/M1)اُ اىقٌٞ اىصغٞشح ىْغت اىَضج  ثْْٞب اىزْبظش اىزبً ٗاىَخيػ ىيحبلاد.

.ػ اىٚ اىحبلاد راد اىزْبظش اىزبًراد اىزْبظش اىَخزي
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ة طؤزِاو دانسا بؤ هةز ب  α2دا  بةهاى   IBM-1بازطة كازتيَكةزة بةكازهيهَساوةكان لةم دوو مؤديَمةدا, بيهسا كة لةبهضيهةى كازى مؤديَمى 

دا بؤ هةز يةكة لة هاوتاكانى شزكؤنيؤم,  IBM-2 كازى ى ( لةبهضيهةevو   eπبؤ هةز يةكة لة ) دانسا اوهاوتايةك , هةزوةها بةهاي طؤزِ

Q(2وة   B(E2)بؤ دةست كةوتهى بةهاى  
+
ليكَؤلَيهةوة كسا  لةسةز لة لايةكى تسةوة  بو هةموو هاوتا ئاماذةثيَكساوةكانى شزكؤنيؤم. (

لة  M1لةبةز ئةوةى تايبةت مةندى   IBM-2موطهاتيسى جوت جةمسةزيى كازتيكَةز تةنوا بة بهضيهةى كازى تايبةتمةنديةكانى 

IBM-1    سيفةتى تواناى هاتهى نية, وة بيهسا كة تايبةتمةندىM1   بةزوِونى بةند دةبيَت لةسةز هاوكؤلكَةىgπ     وgv     كة بةهاى

, بؤ بة هاوتاكانى شزكؤنيؤمبؤ هةزيةكة لة  gπبؤ هةموو هاوتاكانى شزكؤنيؤم بةلآم بةهاى طؤزِاو دانسا بؤ  (gv=-0.02نةطؤزِ دانسا بؤ )

   وة   B(M1) هيهَانى دةست
F  (F-SPIN )خولانةوةى  لةم هاوتايانةدا . وة زِيرَةى سةدى   δ(E2/M1)وة زِيرَةى تيَكةلأ     

هاوجيبَوونى تيَكةلأ بةهاى  بضوكى زِيرَةى دؤشزايةوة و لةزِيَطةيةوة هاوجيبَونى تةواوةتى و هاوجيبَونى تيَكةلأ ثيشاندزا بؤ ئاستةكان.

 . كةدةستخساوة دةتوانيَت طواستهةوة بكات لة ئاستةكانى هاوجيبَوونى تيَكةلأ بؤ ئاستةكانى هاوجيبَوونى تةواو

 



 ثوختة

ذمازةى  ( و 04ذمازةى ثسِؤتؤنةكةى  ) كسا بة ليكَؤليَهةوةى ثيَكًاتةى ناووكى بؤ ياوتاكانى ناووكى شزكؤنيوم كة تريهةوةيةدا دةضلةم تويَ

( بة شيَوةى تيؤزى بة بةكازييَهانى ضوازضيَوةى كازى N=40,42,44,46,48,52,54,56,58,60,62,64,66,68نيوتسؤنةكانى )

.ليكَؤليَهةوة كسا لة ضةز ضهوزةكانى ياوجيَبوونى ياوتاكانى شزكؤنيؤم بة ( IBM-1,IBM-2بؤشؤنى كازليكَساو )مؤديَمةكانى 

بيهسا كة ياوتا بة كازييهَساوةكاى طواضتهةوة لة نيَوانياى  .بةكازييَهانى ئاضتةووشةى ووزوذاووى دووةم بؤ ئاضتة وشةى ووزوذاوى يةكةم

1ياوجيبَوونى تيَكةلَى وةك تايبةتمةندى ضيفةتى ئاضتة نصمةكانى . O(6), و SU(3)بؤ  SU(5)زِوودةدات لة ناوضةى 
+  ,2

+  ,3
+ 

لةم ليكَوليَهةوةدا ( O(6), و SU(5) ,SU(3)( بؤ ياوتاكانى شزكؤنيوم كة دةكةويَتة ناوضةكانى )IBM-2كة دةزييهَساوة لة بؤشايى )

1بة ووزدى  باضى ليَوةكسا. بيهسا كة ئاضتةكانى ياوجيبَوونى تيَكةلآوةى 
3و  +

كازى تيدَةكسيَت بة يةزدوو ياوكؤلكَةى ييَصى  +

(Majorana )ξ1   وξ3   يةك لةدواى يةك, لة كاتيكَدا ياوكؤلكَةىξ2 يةموو ئةو ئاضانةى كة ة شيَوةيةكى بةييصَكازدةكاتة ضةز ب

2يةلَطسى تايبةتمةندى ياوجيبَوونى تيَكةلوَ بة تايبةتى ئاضتى 
يةز وةك ضؤى كؤنترِؤلَى ياوبةشى دةكات لة نيَواى ئاضتى ياوتابوونى  +

  تيَكةلَى 
ياوجيبَوونى  وة ياوضيَكانى لةو ئاضتانةى كة يةماى طؤشةى تةوذمياى يةية. وة يةزوةيا تيبَيهى ئةوة كسا كةوا ضيفةتى  

  تيَكةلَ بؤ ئاضتةكانى 
   ,  

  لةكاتيكَدا ضيفةتى ئاضتى دةطةزِيَتةوة بؤ يةك ئاضت بؤ يةزيةكيَكياى لة يةموو ياوتاكاى .   
دابةش   

2دةبيَت بؤ شياتس لة ئاضتيَكدا لة كؤمةلَى 
 .لةطةلَ ئاضتةكانى ياوضيىَ  +

هةوة كسا لة ئاضتةكانى ووشة بؤ ثازيتية موجةبةكاى لة يةزيةكة ليكَؤليَ IBM-2و   IBM-1لةضةز بهضيهةى كازى بوشونى كازليكَساو      

ى ثازيتية موجةبةكاى بهضيهةيى وباندى بيتَا وباندى طاما. بة طشتى، نسخى يةذمازكساوى ئاضتة نصمةكانى شةبةنطى ووشة يلة باند

-ؤ شؤزيهةى كةيطةكاى. ئةمة دةطةزِيتَةوة بؤ ثمةى ئاشادى ثسِؤتؤىدا ب IBM-1لة ضاو  IBM-2باشتر دزوضتدةبيَت بة بهضيهةى كازى 

  M1وة  E2تايبةتمةندى كازؤموطهاتيطى يةزدوو كازتيكَةزى  . IBM-1و نةياتهى ئةو ئاضتانة لة  IBM-2نيوتسِؤنةكاى لة 

 بة ئاشكسا بةندة لةضةز  E2دةخات  كة تايبةتمةندى يليكَؤلهَةوةى بؤكسا و ئةنجامةكانيشى شيكسانةوة. شيكسدنةوةى ئةنجامةكاى دةز



جوت  سركؤنيؤم بة بةكارييَهانى مؤديَمةكانى بؤسؤنى -ثيَكًاتةى ناووكى ياوتاكانى جوت
  ( IBM-2 و IBM-1كارليَكزاو )
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