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PREFACE 
This book is written mainly for university students taking a course on gravity as 

one of the methods used in geophysical exploration. It is designed to be an 

introductory text book that deals with the basic concepts underlying the 

application of the Earth gravitational field in the exploration of the subsurface 

geological changes and in prospecting of petroleum and other mineral deposits. 

As it is familiar with the exploration geophysicists, this subject is fully dealt with 

in many original authentic internationally-known text books. In this publication, 

no new subjects were added to those found in the other standard books which are 

well known in the geophysical library. In fact these and other related scientific 

papers and research reports formed the solid references for the present work. 

There is, however, a difference in the design and presentation approach. The 

essential publications, used as references, are listed at the end of the book. The 

main feature of this work is being concise and logically sequenced. The 

objective was to present the subject in a simple and clear way avoiding excessive 

descriptions and unnecessary lengthy comments. For this reason the text was 

provided with numerous illustration figures for extra clarification. 

The book consists of twelve chapters. The first five chapters cover the theoretical 

aspect of the subject including the gravitational attraction, shape of the planet 

Earth and nature of the gravity variations, which forms the basis for the 

exploration capability of the method. The following five chapters deal with 

measuring instruments, field surveying techniques, data processing, concept of 

the gravity anomaly and interpretation. A closely associated with gravity 

anomaly is the phenomenon of isostasy. This was presented in chapter 10. Some 

modern aspects of the method were covered in chapter 11 and in the last chapter 

12 actual gravity field-surveys were reviewed. The first case history is an actual 

field survey conducted by one of the authors (Hamid Alsadi) in the south-west 

England in 1965-1966 and the others (by Zuhair Al-Sheikh and Ezzadin N. 

Baban) were carried out in Iraqi territories. These are included here to serve the 

purpose of showing how a real gravity surveying is carried out in practice under 

actual field and processing environments. 

As always in any publication material, there is always a room for improvement if 

extra time and effort has been allocated. From personal experience this is an 

endless process. However, this book is no exception to this rule. With feed-backs 

from future users of the book it is hoped to make the improvement changes 

needed that will be incorporated in future editions. 

                                                              Hamid  N. Alsadi and Ezzadin N. Baban,  

                                                                                   23 Jan. 2013 
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Chapter 1 

INTRODUCTION 

 
 

2.1. General Review 

The basic concept underlying gravity surveying is the variation of the Earth 

gravitational field caused by lateral variation of subsurface rock-densities. In 

other words, a given rock body whose density is different from its surrounding 

medium (i.e. geological anomaly) produces a corresponding disturbance (gravity 

anomaly) in the Earth gravity-filed. The form and amplitude of the created 

anomaly depend on the subsurface geological anomaly such as a salt dome, 

granite intrusion, buried valley, folded or faulted beds. The gravity anomaly 

depends also upon large scale or regional structures such as regional dipping 

strata, sedimentary basins, geosynclines and mountain roots 

Gravity surveying involves measurements of the changes in gravitational 

acceleration at a grid of points over a given area. The observation-data are then 

subjected to a series of corrections and mathematical analyses in order to reduce 

them to gravity values measured relative to a defined datum-plane, normally 

taken at the mean sea level. These corrections ensure that the produced gravity 

anomaly is that caused by the sub sea-level geological anomaly with all other 

effects removed. 

In the last stage of the survey, the obtained gravity anomaly is subjected to 

further analysis with the aim of determination of the causing subsurface 

geological anomaly. This gravity-to-geology process (interpretation) forms the 

ultimate objective of any gravity-survey project. 
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2.2. Historical Review  

The historical development of gravity exploration may be summarized as 

follows: 

 

Late 16th  and early 17th centuries:  

Galileo Galilei (1564-1642) discovered, in about 1590, that objects of 

different masses fall to Earth surface at same constant acceleration. Johannes 

kepler (1571-1630) derived three laws (Kepler Laws) which describe the 

motions of planets in the solar system. These laws were later used by the English 

physicist, Sir Isaac Newton (1642-1727), in formulating the universal law of 

gravitation, giving the mathematical expression (F=Gm1m2/r
2) for the force of 

attraction, F (gravitational force) that exists between any two masses, m1 and m2 

which are located at r distance apart. The law was published in 1687. 

 

 18th century:  

A pioneering work was done by the French scientist Pierre Bouguer (1698-

1758), who had led an expedition in (1735-45) organized by the French 

Academy of Sciences to conduct gravitational studies and other investigations 

concerning the shape of the Earth. He derived the relationships connecting 

gravity variation with elevation and latitude. The Bouguer gravity anomaly is 

named after his name. 

 

19th century:  

The main development that took place then was the introduction in 1817, by 

the English physicist, Henry Kater (1777-1835), of the compound pendulum 

known now by his name, Kater pendulum which was used in gravity 

measurements during the following century. Also the Hungarian physicist, 

Roland von Eotvos (1848-1919), completed the torsion balance in 1890 with 

which the spatial derivative of the gravity changes can be measured. 

 

First half of the 20th century:  

The first application of the torsion balance was made in gravity surveying 

over an ice sheet of a lake in 1901 and the first torsion-balance survey for oil 
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exploration (in California and Texas) was conducted in 1922. The portable 

pendulum began to be used in the early 1920s. It (the pendulum) was used by F. 

A. Vening Meinesz in 1923 in gravity measurements on board of submarine to 

study the gravity variations over some oceanic areas.  

Gravimeters were introduced and utilized in the search for oil and minerals. 

In 1932, the gravimeter (stable type) was introduced as an exploration tool, and 

in 1939, the LaCoste gravimeter (zero-length spring) appeared. In 1948, the 

Worden and Atlas gravimeters, as improved portable instruments, became in 

common use for gravity field-measurements.  

 

Second half of the 20th century:  

During the second half of the twentieth century, the gravity techniques have, 

like other branches of science and technology, witnessed appreciable advances. 

During the period 1940-1960, the techniques of mathematical computation of 

gravity anomalies of simple geometrical shapes were developed. In the few years 

around 1960, George Woollard (1908-1978) used Pendulum measurements to 

establish a world-wide network of gravity base-stations. The digital computers 

introduced in the 1960’s have facilitated gravity data processing and 

interpretation capabilities. In particular, digital filtering by Fourier Transform, 

model analysis and inversion techniques were applied in the analysis and 

interpretation of gravity data.  

In this period, gravimeters have been adopted to measurements in boreholes, 

on sea-floors, on moving ships, and on aircrafts (La Fehr, 1980). Satellite orbital 

paths furnished valuable knowledge on the detailed shape of the Earth (Kahn, 

1983). 

 

The Recent Developments 

The main recent development that occurred in the gravity exploration 

method was the practical application of the airborne gravity as an effective 

exploration tool (Elieff, 2003; Hwang, et al, 2007; Alberts, 2009). 

Satellite radar-based positioning technique, computer hardware, and 

software systems and all other modern supporting technologies (based 

principally on modern digital electronics) have collectively contributed to the 

recent developments of the gravity method. 
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2.3. The Earth Shape 

1.3.1 The Ellipsoid 

The past geodetic and geophysical investigations coupled with the more 

recent satellite data led to the conclusion that the Earth is approximately 

ellipsoidal rather than being perfectly spherical. The model which is now 

adopted for the Earth shape, is an ellipsoid of revolution whose surface is taken 

to be the mean sea-level surface of the Earth. This model is called the reference 

or normal ellipsoid. It is sometimes called the reference spheroid (Fig. 1-1). 

 

 

 

 

 

 

 

 

 

 

In 1930, dimensions of the agreed-upon normal ellipsoid were adopted by an 

organization called the International Union of Geodesy and Geophysics (IUGG). 

By 1967, the numerical constants of the ellipsoidal model were updated to the 

now- accepted values which are: 

 

The equatorial radius (a)              = 6378.160  km 

The polar radius (b)                     =  6356.775  km 

The difference  (a-b)                     = 21.385  km 

The flattening factor (a-b)/a          =  1/298.25 

The angular Rotation Speed  (ω)  =  7.292 * 10-5  radian/sec 

 

a 

Spheroid 

Ellipsoid 
b 

Fig. 1-1 The ellipsoidal model of the Earth 
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1.3.2 The Geoid 

In order to have a reference datum level to which measurements can be 

related, a physical surface for the Planet Earth was defined. This surface is taken 

to be the average sea-level over the oceans and over the sea-water if it were 

extended in canals cut through the continents. This global surface is commonly 

referred to as the geoid. The geoid surface is horizontal (i.e. perpendicular to 

plumb line) at all its points (Fig. 1-2). 

 

 

 

 

 

 

  

 

 

 

 

In general, the geoid surface does not coincide with that of the normal 

ellipsoid. In fact, the deviation between the two surfaces can be as large as 100 

meters. The reason for this discrepancy is that the geoid suffers from certain 

surface deformations (geoid undulation) caused by small-scale and large-scale 

density anomalies in the Earth crust.  

A small-scale localized excess-mass anomaly would warp the geoid upward.  

Under large-scale continental blocks, the geoid surface is warped upwards due to 

rock material existing above it, and it is warped downwards over the oceans 

because of the lower density of the water. 

The geoid with its natural undulations presents a model closer to the actual 

Earth than any other suggested models. It differs from the ellipsoid model which 

is based upon a simplified theoretical Earth in which density is allowed to vary 

vertically (with depth) but not laterally (Fig. 1-3). 

 

 

 

Ellipsoid 

 

b
  

a
  

Geoid 

 

Fig. 1-2 The geoid with its undulations is defined by the mean sea-level.  

              The dotted line represents the Earth reference ellipsoid. 
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According to the geopotential concept, the undisturbed ocean surface is an 

equipotential surface. This means that the geoid surface has, by definition, the 

same gravitational potential as the mean ocean surface 

The geoid surface is used as a reference (datum level) for local geodetic and 

geophysical survey measurements. However, large-scale global measurements 

(such as astronomical surveying) are made relative to the reference ellipsoid.  

 

 

 

 

 ρ1           

ρ1 

ρ2 

ρ3 

 

 

      
ρ3 

 

 

 
ρ2           

Fig. 1-3 Density distribution in the two models, the ellipsoid (A) and the geoid 

(B)  that are developed for the Earth. 

 

(A) (B) 

 



Chapter 2 

THE EARTH GRAVITATIONAL FIELD 

 

 

 

One of the principal potential fields existing in nature is the Earth 

gravitational field. Within this field, a force of attraction occurs between any two 

masses existing in universe. The basic physics has furnished mathematical laws 

that govern the behavior of all the scalar and vector quantities associated with 

this phenomenon. In this chapter, we shall present simple explanatory notes for 

the scalar gravitational potential and for the gravitational vectors; force, 

acceleration and gradients.  

 

2.1. The Universal Law of Gravitation 

Isaac Newton (1643-1727) formulated the universal law of gravitation which 

evaluates the attraction force F that exists between two particles of masses m1 

and m2 located at distance r apart (Fig. 2-1): 

 

F = G m1 . m2 /r2            

 

 

 

 

 

 

 

                                                            

 

m1  

m2  

r  

Fig. 2-1 Attraction force (F) between two masses; m1 and m2 at distance r 

apart. 
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The constant G, called the Universal Gravitational Constant, was 

experimentally determined and found to be of the value: 

 

G = 6.673 10 8  (cm 3 .gm-1.sec-2) 

or, 

G = 6.673 10-11 (m 3 .kg-1.sec-2)   

 

2.2. The Gravitational Acceleration 

Newton's second law of motion states that any body of mass (m) under the 

effect of force (F) moves with acceleration (a) where: 

 

F = ma                     

Now, in the case of two particle-masses (m1 and m2), suppose one of them 

(mass m2, say) is free to move, then this mass (m2), which is under the influence 

of the attraction force due to the pull of the stationary mass m1, will move 

towards m1 with acceleration a1.  

By combining these two laws, equations 3-1 and 3-2 for the two-mass 

system, the following relationship is readily obtained: 

 

a1 = Gm1 / r2                 

Likewise, if m1 is the mass that is free to move, then it will move towards 

the mass m2 with acceleration a2.  

The acceleration a is directly proportional to the causing mass m and 

inversely proportional to the square of the distance r. Thus, the vector quantity a, 

which is the acceleration imposed, by a mass m, on a number of masses (m1, m2, 

…) located at the same distance from m, will be the same regardless of their 

individual masses (Fig. 2-2).  
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2.3. Gravity Computations of Large Bodies 

Equation 3-3 expresses the relationship between a particle-mass 

(infinitesimal body) and the acceleration created at a point located at a defined 

distance from it. A particle of mass Δm would create an acceleration Δg at an 

observation point at r distance away is given by: 
 

Δg =  G Δm / r2 

In gravity surveying work, two modifications need to be introduced. The 

first is that the acceleration measured or computed is the vertical component, and 

the second modification is that the gravity source is a finite body-mass and not 

an infinitesimal particle. This is necessary since, in practice, all survey activities 

are concerning large mass-bodies buried at certain depths below ground surface. 

The approach (Fig. 2-3) for the computation of the vertical component of 

acceleration (gz) for a mass-body of finite size is by considering the body as 

being consisting of a large number of particles and then computing the vector 

sum of the contributions (Δgz) of the constituent particles. For the nth particle 

(Δmn) of a body buried at depth below the surface, the vertical component of its 

acceleration (Δgn) at the observation point (P, Fig. 2-3) is given by: 
 

Δgn =  (G Δmn / rn
2) cos θn 

Fig. 2-2 Acceleration vectors (a) indicated by red arrows are due to the attraction 

force imposed by the mass (m) upon masses (m1, m2 ,… , m5) which are at equal 

distances from the causing mass (m). Vectors (a1, a2, …) are of equal magnitudes 

regardless of the magnitude of these attracted masses. 

 

m 

m1 

m2 

m3 

m4 

m5 
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The net vertical component of acceleration (gz) due to the whole body is 

obtained by summing the effects of the individual particles of the body, that is 

the sum Σ Δgn , where: 

 

gz  =  G Σ ( Δmn / rn
2) cos θn 

Using Cartesian coordinate system for a three dimensional body of constant 

density (ρ), this equation may be re-expressed by the integral form: 

  

gz  =  G ρ ∫∫∫ z (x2 + y2 + z2 )-3/2 dx dy dz 

It should be noted here that the term gravity is used in the geophysical 

literature to mean gravitational acceleration. 

 

2.4. The Acceleration Unit 

Normally the acceleration is measured by units having (in the cgs system) 

the dimensions of cm/sec
2

. This is called the gal after the Italian physicist 

Galileo. This unit is too large for practical survey measurements and thus the 

Fig. 2-3 The approach for computing the vertical component of acceleration 

caused by a mass-body of a finite size. Two-dimensional body (lamina) is used 

here to clarify the concept. 

 z 

 x 
P 

θ 

 
Δmn 
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milligal is normally used. The units that are in common use in gravity 

exploration work are: 

1 gal = 1 centimeter /sec 2  

1 milligal = (1/1000) gal 

1 microgal = (1/1000 000) gal 

 

Another acceleration unit, the International Standard (SI) gravity unit (g.u.), 

is also used. One g.u. is equal to 1 micrometer/sec
2

. Hence, 

 

1 g.u. = 1 micrometer/sec 2  

1 milligal = 10  g.u. 

 

2.5. Gravity Gradients     

In general, the gradient of a natural field, such as gravity, is defined as the 

spatial rate of change of that field. In gravity surveying work, the gradient is 

defined as the rate of change of vertical component of gravity with respect to 

horizontal distance. On a gravity data-set shown as a contour map, the gradient 

at a point is measured in the direction of maximum slope. The common unit used 

for gradients is the Eotvos unit which is defined to be 10-6 milligal per centimeter 

of horizontal distance [Dobrin, 1960, page 179]. 

The gravity gradient (which is a vector quantity) is represented on a gravity 

contour map by an arrow of length which is proportional to its magnitude, 

pointing in the direction of the maximum rate of change of gravity (Fig. 2-4). 

Sometimes this is referred to as the horizontal gradient to differentiate it 

from the vertical gradient which is defined as the rate of change of gravity with 

respect to displacement in the vertical direction. Mathematically we can define 

the terms as follows: 

 

                      Horizontal Gradient :   d g / d x   ,    d g / d y 

                      Vertical Gradient :       d g / d z 
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2.6. Gravitational Field Intensity and Potential      

In and around the Earth there exist a number of natural fields, such as the 

magnetic, electric, and gravitational fields. Any of these fields is defined as 

space in which the effect of force-source can be experienced. There are two main 

parameters associated with the field. These are the field intensity (field strength) 

and the field potential. Both of these parameters have measurable values at every 

point in the space where the field exists. 

It is to be noted here that the geophysical techniques applied in oil and 

mineral explorations which utilize such natural fields (e.g. gravity, magnetic or 

electric) are sometimes referred to as potential methods because they are all 

having potential fields.   

For the gravitational field, the field intensity at a given point is defined as 

the force (or acceleration, g) a unit mass experiences when positioned at that 

point. It is a vector quantity in the direction of the source of the field. 

The second parameter is the potential of the gravity field (U). The 

gravitational potential at a given point is defined as the work spent in moving a 

unit mass from infinity to that point. Unlike the intensity, the potential is a scalar 

quantity.  

Fig. 2-4 Vector representation of the gravity gradient. Length of the 

arrow is proportional to the magnitude of the gradient at the point of 

measurement. 

 

200 mgal 
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By definition, the potential (U) at a point located at distance (r) from the 

centre of the Earth (of mass M) is given by U(r) where, 

 

U(r)   =  G M ∫(1/r2)dr 

That is: 

U(r)  =  - G M /r 

 

Conversely, differentiating the function U(r) with respect to the distance (r) 

gives the gravitational force (F), that is  

F = dU/dr 

Or: 

F   =  G M /r2 

This is the mathematical relationship between the two parameters, the scalar 

(U) and the vector (F). It shows that the gravity force (F) or the acceleration (g) 

at a point is proportional to the gradient of the potential (U) of the gravitational 

field at that point. 

The concept of potential can be used in gravity computations instead of the 

gravity force or acceleration. The gravitational potential U(r) has the units of cm2 

/ sec2. 

 

2.7. Concept of the Equipotential Surface 

The equipotential surface is defined as the surface existing within a potential 

field on which the potential function U(r) is constant. This implies that there is 

no force component acting long that surface. This also means that the force at 

any point of the surface is always perpendicular to the equipotential surface at 

that point. 

Over a part of the Earth surface where the subsurface medium is 

homogeneous, the gravitational equipotential surface of the gravity field will 

have a curvature which is equal to that of the earth surface which locally appears 

as horizontal to an observant. For the case  of an anomalous mass existing below 

surface, the equipotential surface shall warp in such a way as it becomes 

perpendicular to the gravity direction (plumb line direction) at each of its points 

(Fig 2-5). The warping is upward for a mass of surplus density and downward 

for a deficient density.  
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The ocean surface (geoid surface) is in fact an equipotential surface. It is 

horizontal surface in the sense that it is perpendicular to the plumb lines at all 

points of the ocean surface. 

 

2.8. The Earth Gravity Variations 

As a matter of fact, the Earth gravitational field in space is not constant, but 

varies from one point to another. There are several factors that bring about 

gravity changes on and above the Earth surface. At an observation point, the 

measured gravity force (or acceleration) represents the vector sum of the various 

gravity components generated from different sources.  

If the Earth were stationary, homogeneous and perfectly spherical in shape, 

then the intensity of its gravitational field would have been of constant value 

over its entire surface. In reality, however, the earth is not homogeneous and it is 

neither stationary nor perfectly spherical. The earth is an ellipsoid of revolution 

rotating about its polar axis. These two factors, in addition to the inhomogeneous 

nature of the Earth crust, are the main causes for disturbing the uniformity of the 

gravitational field.  

The rotating flattened earth causes the gravity value to change according to 

latitude position. Beside this uniform global variation of the earth gravity there is 

another type of variations of local origins. The main cause for the local 

(anomalous) gravity changes is the existence of lateral density variations found 

 Fig. 2-5 Effect of density variation on the generated equipotential surfaces; 

(A) Case of no lateral density changes, (B) Case of an anomalous, surplus-

density body  

 

 (A)                                            (B)     

 

∞ ∞ 
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in the crust of the Earth. In fact, all local deviations in the Earth crust from the 

uniform ellipsoidal-model would disturb the uniformity of the Earth gravitational 

field. These detailed gravity changes that are of localized nature (caused by the 

existence of anomalous geologic bodies) form the basis for oil and mineral 

exploration by gravity surveying. 

As shown in the following flowchart (Fig. 2-6), the Earth gravity-variations 

may be subdivided into two main types. The first type is the global (general) 

variation which is attributed to both rotation and flattening features of the earth. 

This is expressed by a mathematical formula that describes what is called the 

Normal Gravity of the Earth. Superimposed on this global type of variations, is 

the local (detailed) variation caused by the geological and topographic 

conditions prevailing in the neighborhood of any observation point used for the 

measurement. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2-6 Flowchart showing the two types of the Earth gravity variations; the 

global and the local types of variations. 
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Chapter 3 

THE GLOBAL GRAVITY VARIATIONS 

  
     

The earth is an ellipsoid of revolution rotating about its polar axis. These 

two factors (ellipsoidal shape and rotation) disturb the uniformity of the global 

gravitational field. Part of the effect is due to the Earth shape (shape effect) and 

the other part is due to its rotation (rotation effect). 

 

3.1. The Shape Effect    

As we have presented in a previous discussion, the gravitational acceleration 

(g), measured on the surface of a static homogeneous spherical Earth of mass M, 

density ρ, and radius R, is given by: 

 
 

g = G M / R2    = 4π G R3ρ/3R2 

Hence, 

g = 4π G R ρ/3 

      

In this case, since R and ρ are constant, g will be constant all over the Earth 

surface or over any other concentric spherical surface (Fig. 3-1). 

 

 
 
 
 
 
 
 
 
 
 
 
 

R g 

g 

g 

g 

g 

g 

Fig. 3-1 Gravity field of a homogeneous spherical model of the Earth 
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In reality, the Earth is not a sphere but an ellipsoid of revolution with its 

polar radius shorter than the equatorial radius by 21 km. In this case, the 

distances of the surface-points vary from location to location and hence the 

gravity value changes accordingly (Fig. 3-2). 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

The ellipsoidal shape of the Earth has the effect of increasing gravity as the 

observation point gets nearer to the poles. In fact, the gravity value, measured at 

any point on the mean sea level surface, is always higher than that measured at 

the mean sea level surface at the equator. It reaches its maximum value at the 

polar points (Fig. 3-3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 

 

Fig. 3-2 Gravity field of a homogeneous ellipsoidal model of 

the Earth. 

 

b 

 g2 

 g1 
a 

 g3 

Fig. 3-3 Variation of the gravity vector (red arrows) over the 

Earth surface due to its ellipsoidal shape. Length of arrow is 

proportional to gravity magnitude. 
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 g2 
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3.2. The Rotation Effect    

A body on the surface of a rotating Earth experiences a centrifugal force that 

acts in opposite direction to the gravitational attraction force. Because the Earth 

is rotating about its polar axis, the developed centrifugal force attains its 

maximum value at the equator where the rotation radius attains its maximum 

length, rmax (Fig. 3-4). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 The magnitude of the centrifugal acceleration of a body rotating at an 

angular speed (ω) is equal to (ω2r), where r is the rotation radius. Thus, the 

gravity-vector contributed due to rotation is maximum at the equator decreasing 

gradually towards the poles (Fig. 3-5). It reaches zero-value at the polar points. 

The reason for the change is that the rotation radius becomes less as the rotation 

plane of a point at the earth surface gets nearer to the poles. 

Development of the centrifugal force and the manner of its variation seem to 

give the logical explanation for the cause of the flattening phenomenon of the 

Earth. Accordingly, the flattening process is therefore, expected to continue with 

time bringing further flattening in the future.   

 

3.3. The Combined Effect  

 Because the Earth is ellipsoidal and rotating about its shorter (polar) axis, 

its actual gravity is made up of the two vectors; the gravitational attraction 

directed towards the Earth centre and the opposing centrifugal force in the 

direction perpendicular to the polar axis (Fig. 3-6). 

rmax 

r 

r 

Fig. 3-4 Change of the rotation radius (r) with the location on the 

Earth surface. 
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The measured acceleration vector at each point on the Earth surface is the 

resultant (i.e. combined effect) of two components acting at that point. These are 

the gravitational attraction of the Earth-mass and the centrifugal force due to the 

Earth-rotation. 

The gravity has its maximum value at the Equator and its minimum value at 

the polar points. In fact, the observed gravity value at the poles exceeds that at 

the equator by about 5200 mgal. This difference is found to be about half the 

value expected from shape considerations only. The reduction is interpreted to 

be caused by the subsurface mass in the equatorial bulge which creates an extra 

gravity component that increases the equatorial value, giving the difference of 

5180 (i.e. about 5200) mgal.    

 
Fig. 3-5 Variation of the gravity-vector over the Earth surface due to 

Earth rotation. 

 
 

g 

  gc 

gE 

Fig. 3-6 Resultant gravity (g) of the two components; Earth-

mass gravity (gE) and centrifugal acceleration (gc). 
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  It is worth noting that the net gravitational vector does not point to the 

centre of the Earth except at the pole and at the equator. This is because at the 

pole, there is only the mass effect (rotation effect is zero) and at the equator 

where the two effects are collinear but in exactly opposite directions. 

 

3.4. Normal Gravity   

As it is mentioned above, the Earth reference-surface for gravity 

computations is defined to be the surface of the ellipsoid which coincides with 

the mean sea level. This is called the reference ellipsoid or the normal ellipsoid, 

and the gravitational field determined over this surface is given the term Normal 

Gravity.  

The Normal Gravity (gN) is expressed as a mathematical function of latitude 

(Φ), that is gN (Φ). It describes the global gravity variation which is attributed to 

both of flattening and rotation of the Earth. 

The first normal-ellipsoid model was defined in 1930 by the International 

Union of Geodesy and Geophysics (IUGG). Based on the constants of this model 

together with the measured gravity value at the equator, the first theoretical 

formula for the Normal Gravity, gN(Φ), was formulated (see Nettleton, 1976, 

p17). The measurements involved in the computations were adjusted to the 

pendulum measurements made at the German city Potsdam in 1906. This 

formula is normally referred to as the International Gravity Formula (IGF). 

In 1963, the Society of Exploration Geophysicists (SEG) published the 

results of a global gravity measurements by G.P. Woollard. The publication 

includes the gravity values that were obtained from pendulum and gravimeter 

measurements made at the worldwide network of observation stations, (now 

called the International Gravity Standardization Net, 1971, IGSN71).  

In about the year of 1965, accuracy of gravity measurements has largely 

improved, attaining a tenth of the milligal. After this time, more accurate 

measurements made by gravimeter and falling-mass methods revealed that the 

Potsdam-based value is 14-mgal too high. In view of this finding the data 

published by SEG in 1963 had to be corrected by subtracting 14 mgal. 

In 1967, more accurate satellite data and more advanced measurement 

technology led to revision by the IUGG of the normal ellipsoid model of the 

Earth. The refined Normal Gravity formula based on this revised ellipsoid was 

determined. This formula, which replaced the IGF, is called the 1967-Geodetic 

Reference System (GRS67) formula and is expressed by: 
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gN (Φ) = 978.031846 (1 + 0.005278895 sin2 Φ + 0.000023462 sin4 Φ) 
 

In 1980, the normal ellipsoid was subjected to further refinements. The 

produced changes were too small to be of practical significance. Thus the 

GRS67 formula stayed adequate for work in gravity exploration (Fig. 3-7). 
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Fig. 3-7 Plot of the Normal Gravity function (GRS67 formula), gravity in gals against 

latitude in degrees, covering the latitude range of 0 to 90 degrees. 

 

The Normal Gravity function, gN (Φ), expressed by the GRS67 formula 

shows that the gravity value increases as the observation point approaches the 

polar points. In fact, it attains a minimum value of 978.0318 gals at the equator 

and a maximum value of 983.2178 at the polar points. This means that the polar 

value exceeds that of the equator by 5186 milligals.  

To summarize; the Normal Gravity of the Earth, expressed by the GRS 67 

formula, expresses the large-scale global gravity variations on the mean sea level 

surface of the rotating and flattened ellipsoidal Earth. Construction of the 

formula is based on actual gravity measurements made at observation-points 

distributed throughout the world. Special interpolation techniques were applied 

in the computations assuming the earth to be of uniform lateral-density ellipsoid. 

 
 



Chapter 4 

THE LOCAL GRAVITY VARIATIONS 

 
 

As it is mentioned, the rotating flattened Earth causes the gravity value to 

change uniformly over the surface of the normal ellipsoid. The changes are 

expressed by the Normal Gravity function gN (Ф). Another type of variations 

which are of localized nature is superimposed on this uniform global variation of 

the Earth gravity. The principal cause for the local gravity-changes (at sea-level) 

is the existence of lateral-density variations found in the crust of the Earth.  

These detailed gravity changes (gravity anomalies) that are caused by local 

geological changes form the basis for oil and mineral exploration by gravity 

surveying. 

Here below the main factors which are of local nature, that affect gravity. 

 

4.1. Elevation Effect 

According to the universal law of gravitation, the Earth gravity decreases 

with the increase of the distance between the center of the Earth and the 

observation point. Thus, at an observation point P (Fig. 4-1), of elevation (h), 

that is at height h above sea level, the gravity will reduce by ∆g where  : 

 
∆g = g0 – GM / (R+h)2 = g0 - g0 [R2 / (R + h) 2 

 
∆g = g0 { 1 – [R2 / (R + h) 2] } = g0 {2hR + h2} / (R +h) 2  

Hence, 
 

                ∆g = 2g0 h/R ,  since h<< R 

 

The same result for ∆g  can be obtained from differentiating  the equation of 

the gravitational universal law (g0 = GM/R2) with respect to R. 

 
dg0 / dR = - 2 GM / R3  = - 2g0 / R 
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Hence, for a finite increment h in R, and neglecting the minus sign: 

 
                                     ∆g = 2g0 h / R  

 
     It is noted here that ∆g is dependant only on the Earth gravity (g0), 

considering that the Earth radius (6370 km) being practically constant. From the 

Normal Gravity formula, g0 is 983.2178 gal at the equator and 978.0318 at the 

poles. These figures give: 

 
∆g  =  0.309    mgal per meter of elevation at the equator 

 
∆g  =  0.307   mgal per meter of elevation at the poles 

 
Giving: 

 
∆g  =  0.308 mgal per meter of elevation as an average 

 
∆g  =  0.31   mgal per meter of elevation as an average 

 

For practical application in gravity normal work the rate of 0.31 mgal per 

meter of elevation  change is considered adequate. 

 
 
 

Fig. 4-1 Elevation effect: Decrease of gravity with the increase of 

elevation (h) of the observation point (P) above the surface of the 

normal ellipsoid. 

 
 

h 

p 

Surface of the normal ellipsoid 
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4.2. Excess-Mass Effect  

If the observation point is located on land surface which is rising by h 

meters above sea level, the rock mass existing between observation point and sea 

level has its own contribution to the gravity value measured at that point. For 

computation purposes, the rock layer above sea level is approximated by an 

infinite horizontal slab of thickness (h), tangent to the normal ellipsoid which is 

the sea surface. 

The gravity effect due to the excess-mass present above the sea level is 

computed by assuming an infinite horizontal slab of rock-material, of thickness 

(h), mean density (ρ), and of infinite extent (Fig. 4-2). The gravity effect of such 

a slab is given by (see derivation in chapter-8): 

 
                                       ∆g = 2 π G ρ h  

 

This means that the gravity contribution of an infinite slab of material 

(density, ρ) is given by ∆g  =  0.0419 ρ mgal per meter  

 
 

 
 
 
 
 
 
 
 
  
 
 
  
 
      

 

This model is used in the adjustment process, which reduces the measured 

gravity at an observation point to what it would be if it located at the surface of 

the normal ellipsoid (sea-level).  

 

Fig. 4-2 Excess mass effect; increase of gravity at observation point (P) due to an 

infinite horizontal rock-slab is considered to be tangent to the surface of the 

normal ellipsoid. 

 

h 

 Earth ellipsoid surface  

p 

 sea level  

land 

 surface  



     26 

4.3. The Topographic Effect  

In actual gravity surveys, observation points are not located on surface of 

ideal horizontal slabs but on surfaces of irregular topography. This means that 

the ideal slab has holes, valleys and hills. A rising hill in the neighborhood of an 

observation point will reduce the gravity at the observation point. The same 

effect (gravity reduction) is introduced by a hole or a valley since in this case the 

contribution is to increase gravity value as the observation point had not the infill 

of these holes been removed (Fig. 4-3).  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4.4. Geological Effects  

The main purpose of a gravity survey is to look for a subsurface geological 

anomaly. Such an anomaly that affects gravity value at an observation point may 

be a massive mineral body or a folded or faulted geological formation. As far as 

gravity variation is concerned, a geological change that can create a gravity 

anomaly is lateral density changes. In other words, gravity changes measured at 

or reduced to a horizontal plane (usually taken at the sea-level) reflect density 

contrasts among different geologic features that exist below the surface of the 

normal ellipsoid, which is the sea-level. 

A density contrast between the anomalous body and the surrounding 

medium will cause a corresponding gravity anomaly. The created anomaly is a 

gravity increase (relatively positive) for a density-surplus and gravity decrease 

(relatively negative) for density deficiency. Thus for example a buried heavy 

Fig. 4-3 Topographic effect; decreases of gravity due to topographic 

irregularities (hills and valleys) are defined with respect to the top-surface 

of the horizontal rock- slab that is tangent to the normal ellipsoid. 
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ore-body would create a positive gravity anomaly, whereas a buried salt dome of 

relatively low density would give a negative anomaly (Fig. 4-4).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

From computations at a number of points on a surface located above the 

anomalous body, one can construct gravity-profiles over selected straight lines 

(at a group of co-linear points). The so-obtained profile will show the variation 

of the gravity effect due to that body along the selected line. The three-

dimensional variation may be shown as a contour map. 

The gravity anomaly created by a buried geological body can be analytically 

computed if it is in the form of a defined geometrical shape as it is explained in 

chapter 9 

 

4.5. Time-Variant Changes  

Both of the sun and the moon exert attraction on the Earth. Because of its 

near distance to Earth in comparison to that of the sun, the moon gravitational 

attraction on earth surface is larger than that due to the sun. The combined 

gravity effect due to sun and moon (which is periodic in nature) is called the 

tidal gravity effect. Tidal variations are normally within few tenths of milligal, 

and period of about 12 hours. It is considered to be of the same value if 

 

Fig. 4-4 Geological effect; decrease or increase of gravity (profile) of a 

geological anomalous-mass existing beneath the surface of the normal 

ellipsoid. 
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measurements are made at sites which are less than a few hundred kilometers 

apart.  

There is another type of time variant changes influencing gravity 

measurements which is due to the change with time of the scale factor of the 

measuring instrument. This effect (called the instrumental drift) is strictly 

speaking not a change in the gravity field, but it is always there and incorporated 

with the measured values. The instrumental drift caused as result of mechanical 

changes of the gravimeter levers and springs is continuous with time. Various 

measures are usually taken by manufacturers to minimize the effect but 

nevertheless it is taken into consideration in survey work. 

 Measurements of the time-variant changes in gravity normally include both 

the tidal effect and the instrumental drift combined together. The combined 

effect of the tidal and instrumental drift can be determined by repeated 

observations at the same site. These changes may be shown by a curve 

(gravimeter-reading against time) from which one can sort out the cyclic tidal 

variations from the non-cyclic instrumental drift (Fig. 4-5).  

 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 

 
 

Fig. 4-5 Time-variant gravity variation. The cyclic (tidal) component 

superimposed on the none-cyclic instrumental drift (the dotted line). The lower 

curve represents the time-variant gravity variation (tidal component) with 

instrument drift removed.  
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Chapter 5 

GRAVITY MEASUREMENTS 

 
 

5.1. Features of Gravity Measuring Instruments  

The Earth gravitational acceleration (g) and its changes are measured by 

specially designed gravitymeters, or gravimeters as they are normally called. 

Some of these instruments are designed to measure the absolute value of gravity, 

while others are designed to suit relative gravity measurements. In geophysical 

surveying work, measurements are mainly concerned with relative gravity 

determinations. This involves measuring gravity differences between two 

locations or between two different times at the same location. Measuring 

differences can be used to determine the absolute gravity by measuring the 

difference in gravity between an observation point and a base-station at which 

the absolute gravity is precisely known. 

The measured gravity value (g) or gravity-difference (Δg) are normally 

expressed in milligal units or in SI gravity units (g.u.). Since the Earth gravity 

(g) measured at sea-level is nearly equal to one killogal (103 cm.sec-2), one 

milligal is estimated to be about one-millionth (10-6) of g. 

Gravity changes, for which a gravity-measuring instrument is required to 

detect, are normally found in the range of a few milligals to few tens of milligals. 

Small-scale geological anomalies, such as deep structures or small subsurface 

cavities, may give rise to gravity anomalies that are as small as 0.1 milligal or 

even smaller. This means that a gravimeter is required to detect such small 

gravity changes in g, which are in the order of a few parts in 107.  Thus, an 

accuracy of 0.1 mgal in measuring g would represent an accuracy of one part in 

ten millions. This is equivalent to measuring a 100-km distance with an accuracy 

of one centimeter. 

Modern measurement techniques, such as the free-fall method, have attained 

an accuracy of 0.01 milligal which can detect changes in the Earth gravity with 

accuracy of 1 in 108. Any gravity-measuring instrument should, therefore, be 

designed in such a way as to be capable in measuring gravity with this kind of 

accuracy. In addition to being highly accurate, the measuring instrument is 

required to be portable, stable, and fast to operate. For any gravity-measuring 
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instrument, these features are necessary in order to be a practical tool in 

conducting an exploration gravity survey.  

 

5.2. Methods of Measuring Gravity 

There are four main methods which may be used in measuring gravity. 

These are: Free-falling Mass, Swinging Pendulum, Spring Stretching, and 

Vibrating Fiber. 

 

5.2.1 Free-falling  

A mass falling from a rest position of height (h) will cover the distance h 

during time lapse (t) according to the equation: 

 
                                              h = (1 / 2) g t2 
 

Although the physical principle of this method is simple, it is difficult in 

practice to attain the kind of accuracy required. Thus, for a one meter fall, the 

distance (h) and time (t) must be accurate within 10-5 cm and 10-8
 sec 

respectively. By the use of laser-interference devices, time and distance of 

falling mass can be determined with this kind of accuracy. However, achieving 

this standard of accuracy has not become available until after 1960 when laser 

and the associated electronic technology were introduced. 

The instrument design, based on the falling-mass principle, consists of two 

corner-cube prisms and a laser-light source. The interference of reflected laser-

light beams is used to measure the time covered by the falling prism in covering 

the pre-defined height (Fig. 5-1).  

In practice, this instrument is not easy to operate as a portable instrument. It 

is more suited for use in geophysical observatories where gravity is required to 

be measured with an accuracy of 0.1 mgal or better. 

The measurement-techniques based on use of falling mass instruments were 

introduced during the 1960s. These measurements have contributed in providing 

accurate gravity values at base stations of the world-wide network. 
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5.2.2 Swinging Pendulum    

A pendulum is defined as an instrument consisting of a freely-swinging 

mass which is suspended from a fixed point (Fig. 5-2). The pendulum swinging 

period (τ) is the function of the pendulum constants and the earth gravity (g). For 

the well-known simple pendulum, swinging with small amplitude, the period (T) 

is given by the function: 

                                           τ  =  2 π √ L / g 
 

where L is the length of the string (considered to be weightless) which 

connects a point mass to a suspension point.  
  In general, τ is given by:  

τ  =  2 π √ I / mgh 
 

τ2  =  k / g  , 

Where I is the moment of inertia about the suspension point, and h is the 

distance from the suspension point to the center of pendulum mass (m).  

 

 

 

Fig. 5-1 Sketch layout of the falling-prism instrument for measuring gravity 
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This formula expresses the relation between g and the pendulum constant 

(k), 

 
                                             k = 4 π2 I / mh  

It is to be noted here that for the simple weightless string, shown above, the 

constant k will be equal to 4π2L. 

Hence g can be readily computed from the relation: 

                        
                                              g  =  k / τ 2 

This is simple computation, but the main problem is in designing a 

pendulum that can measure g within the precision of 0.1 mgal. However the 

pendulum proved to serve well in accurate measurement of differences rather 

than absolute values of gravity. Thus, assuming k stays unchanged when the 

pendulum is moved from position-1 to position-2, we can write: 

 
g1 τ1 2  =  g2 τ2 2  

and 

g2  = g1 ( τ1 / τ2 )2 

 

Thus from these two measurements we can find the gravity difference, Δg  ( 

= g2-g1). Assuming that k keeps unchanged, g2 and g1 would have the same 

amount of error and they cancel out in the subtraction process giving accurate 

value for  Δg, at an accuracy that can reach a level of better than 0.1 mgal . 

mass 
 

String 
 

Support point 
 

 Fig. 5-2 The simple pendulum consisting of a mass attached to the end of a string. 



33    Chapter 5 : Gravity measurements 
 

A standard portable pendulum, the Gulf Pendulum (Fig. 5-3), was used in 

geophysical exploration during the 1930s. It consists of glass bar with wedge-

shaped supports on either side resting on glass plates which were attached to a 

heavy frame. The swinging mass is attached to a wedge which is resting on a 

stationary platform. The pendulum is encased in a vacuum chamber which is 

thermostatically controlled to maintain stable temperature. 

  
 
  
 
     
 
 
 
 
 
 
 
 
 
 
 

 

The Gulf Pendulum was used by G. P. Woolard (1908-1978) and his group 

in establishing the world-wide network of gravity base-stations during the years 

around 1960.  

 

5.2.3 Spring Gravimeter  

Unlike the falling weight and pendulum instruments gravimeters are 

designed to measure gravity differences rather than absolute gravity values.  In 

principle, a gravimeter is a refined version of the spring balance. The extension 

of the spring depends on the pulling force. As it is shown in Fig. 5-4, the 

gravitational force (mg) is balanced by the spring upward force (kx). That is: 

 
mg = kx 

 
 
 
 

Fig. 5-3 Sketch showing the structure of the Gulf pendulum. 
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This means that any change in gravity (Δg) produces a corresponding 

change (Δx) in the spring length. Since: 

 
m  Δ g = k  Δ x 

and 

Δx/ Δg = m/k 
 

It should be noted here that the spring balance differs from the beam balance 

in that it determines weight (force) and not mass. That is why the spring balance 

is used for gravity changes whereas beam balance is unable to detect such 

changes. 

In a gravimeter, a mass is attached at the end of a spring and when gravity 

increases the spring is stretched by a proportional amount. Thus from direct 

measurement of the change in the spring length (Δx) the gravity change (Δg) is 

determined from Δg = k Δx/m. 

A gravimeter is required to detect gravity changes of 0.1 mgal (one in ten 

millions of the earth gravity). The spring of a gravimeter is about 30 cm-long, 

which means that it is required to measure length change in the order of 0.03 

microns (3x10-6 cm). For this reason, gravimeters employ magnification 

processes based on either optical, electrical or mechanical techniques. 

Fig. 5-4 Principles of the spring balance 
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It is worth noting that this type of a spring system (similar to a seismometer) 

has a natural period (τ), when it is freely vibrating in vertical direction. τ is given 

by: 

 

τ  =  2 π √ m/k 
  
Using the equation    (Δx / Δg  =  m/k ), 
 
 we get: 

Δ x/ Δ g  =  (τ / 2 π)2 

 

This means that, the system sensitivity (Δx/Δg), which is proportional to τ2, 

can be increased by choosing the system-parameters in such a way as to get 

larger natural period (τ). That is getting greater change in the spring length for a 

given gravity change. 

All gravimeters are sensitive to changes in temperature, pressure and to 

earth seismic tremors, and all these effects are taken into consideration in the 

construction-design.  

According to their construction-designs, gravimeters are divided into stable 

and unstable types: 

 

5.2.3.1 The Stable Type of Gravimeters 

A case of stable equilibrium is represented by a body that tends to return to 

its rest position if it were slightly displaced. The unstable equilibrium case, on 

the other hand, is the case where the body tends to move farther away from its 

original rest position.  

In the stable type of gravimeters, the spring used is of stiffness (k) which is 

as low as possible to give highest possible sensitivity while at the same time it is 

strong enough that can support the suspended mass (m). Examples of stable 

gravimeters are Hartley and Gulf gravimeters. 

The Hartley gravimeter is one of the simplest examples of the stable type of 

gravimeters. The vertical motion of the mass is magnified about 50,000 times by 

a system of mechanical and optical levers. It is the first gravity instrument that 

used the principle of the null method by which the displacement is measured 

through adjustment of an auxiliary spring (Fig. 5-5). 
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The accuracy of this gravimeter is only about one milligal which is not 

sufficient for normal gravity exploration work. 

The Gulf gravimeter consists of a mass attached to the lower end of a 

helical spring which is made in the form of a helix with the flat surfaces always 

parallel to the spring axis (Fig. 5-6). 

When the gravity increases the spring is rotating as well as increasing in 

length. In the Gulf gravimeter, the rotation is magnified by a system of mirrors 

giving an accuracy of 0.02 mgal. 

 
 
 
 
 
 
 
 
 

Fig. 5-5 Schematic representation of the Hartley gravimeter 
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5.2.3.2 Unstable type of Gravimeters 

In the design of this type of gravimeters, extra sensitivity is gained by 

making the system unstable about the null position. A principle, called 

astatization or labilization, is introduced to achieve this objective. In an astatized 

system the gravitational force is kept in an unstable equilibrium with the 

restoring (stabilizing) force. The instability feature is provided by an extra force 

which acts in the same direction as the gravitational force and in opposition to 

the restoring force. This extra force, called astatizing or labilizing force, is 

created once the suspended gravimeter mass is shifted from the null 

(equilibrium) position. The astatizing force acts as an agent that intensifies the 

effect of the gravity change with respect to the equilibrium value. This feature 

would greatly increase the measurement-sensitivity of the instrument. 

One example of this unstable type of gravimeters is Thyssen gravimeter. As 

illustrated in Fig 5-7, the astatizing force is provided by an auxiliary mass (m). 

The main mass (M) which is suspended from one end of the gravimeter beam is 

balanced against the spring stabilizing force (kx). 

The auxiliary weight is put exactly above the pivot which is balanced in an 

unstable equilibrium. A small change in g will cause the beam to tilt and the 

mass 

 Fig. 5-6 Schematic representation of the Gulf gravimeter. 
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auxiliary mass to move in the same direction, bringing about an additional 

couple which reinforces that of the changed gravitational force. This causes an 

additional increase in the spring length which is proportional to the change of 

gravity. The precision of an observation achieved with this gravimeter is about 

0.25 mgal.  

 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 

LaCoste-Romberg Gravimeters  

It consists of a hinged beam carrying a mass (M) which is supported by a 

spring. As shown in Fig 5-8, the angle between the spring and the beam (θ1) 

changes with the change in gravity (Δg). This change will cause the moment of 

the spring on the beam to vary in the same sense as that of the moment created 

by the gravitational change. This kind of design would provide the required 

instability equilibrium (i.e. astatization effect) which magnifies the effect of 

gravity change. Measurement of the changes is made by applying the null-

principle where an adjusting screw is turned to change the support position of the 

main spring.  

 Fig. 5-7 Schematic representation of the Thyssen gravimeter. 
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Fig. 5-8 Schematic representation of the LaCoste-Romberg gravimeter. 
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Through electrical heating coils (thermostat device), the temperature of the 

system is maintained within 0.002 C and its measurement accuracy can be up to 

0.01 mgal.  

The LaCoste-Romberg gravimeter has an additional feature which is the use 

of the so called “zero length” spring. In the zero position of the gravimeter beam, 

the main restoring spring is designed in such a way that the beam weight is 

counteracted by an extra tension put into the spring when it is manufactured. 

This means that the beam, in its null position, produces zero extension in the 

spring. This kind of spring (called “zero length” spring) can be made by twisting 

and coiling a wire at the same time. Effectively the extension of the zero-length 

spring from equilibrium state caused by the beam weight in its null position is 

counteracted by the extra tension put into the spring when manufactured. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

The advantage of the zero-length spring is that the beam deflection will be 

symmetrical about the equilibrium position. That is a positive reading and 

negative reading for the same magnitude of gravity change will be equal. 

Another advantage gained from the use of such springs is that the spring can be 

shorter than normal length for the same amount of sensitivity (Dobrin, 1960). 
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There are different models of LaCoste-Romberg gravimeters. Fig. (5-9) 

show two models (G and EG) of Romberg gravimeters. 

 

 
Fig. 5-9 Show two models of LaCoste-Romberg gravimeters. Aliod G gravimeter (left side) 

and EG gravimeter (right side). 

 

The modification changes of LaCoste and Rumberg gravimeters leads the 

mode of acquisition to a digital read-out and/or logging of the gravity 

measurement and no longer necessity to read through the eye-piece, the accuracy 

and repeatability of the instrument are much less subjective. Another 

modification changes the battery pack to a lithium-ion rechargeable that is 

located on the meter itself. The Gravition EG model specification are self-

leveling, all meter functions are fully automated, most sensitive, data resolution 

24-bit less than 0.0001 mgal bit size. In addition it is provide with a 

monochrome VGA LCD with backlight digital display, 32MB Flash RAM 

Memory (up to 100,000 stations) and integrated data logger.  

  

Worden Gravimeter 

The Worden gravimeter (introduced in 1948) consists of a small beam 

supported by a zero-length spring (Fig 5-9). The pointer is viewed through an 

eyepiece to see that it is back to the null position when the micrometer screw is 

turned. Differences in dial readings are converted into gravity units by use of the 

scaling factor of the instrument. Thermal compensation is affected by the 

differential expansion system which compensates temperature effect on the 

spring. 
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The design of the instrument is similar to that of the Lacoste-Romberg 

gravimeter. It is smaller (about 35cm high, 18cm in diameter and of weight less 

than 4kg and it has the capability of measuring large gravity change reaching 

more than 5200 mgal. Its accuracy reaches 0.01 mgal (Dobrin, 1960),  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Worden gravimeter became popular for its convenient size, weight and 

easy manipulation. It has a temperature compensation mechanism and of highly 

efficient thermal insulation. The instrument is entirely non-magnetic. It is read 

by the null-method and requires no clamping.  

Scintrex gravimeter  

It consists of a mass-and-spring assembly put in a vacuum chamber. 

Movement and null adjustment are made through electric transducer. The direct-

current, feed-back voltage is proportional to gravity changes which are stored in 

the provided computer memory. Accuracy attained by this gravimeter is about 

0.01 mgal (Robinson, 1988). 

CG-5 Autograv Gravimeter    

The new CG-5 Autograv system from Scintrex is one of the most versatile 

and advanced gravity systems for mineral exploration, oil and gas exploration 

and microgravity applications. The Autograv is a microprocessor-based 

automated gravity meter that has a measurement range of over 8000 mGals 

Fig 5-10 Schematic representation of the Worden gravimeter. 
 
 

P
o

in
te

r 

Z
e

ro
-l

e
n

g
th

 

m
a

in
 s

p
ri

n
g

 

m 

mg0 

A
d

ju
s

ti
n

g
 s

p
ri

n
g

 
Weight arm 

m (g0 + Δg) 

Hinge 



42 

without resetting and a reading resolution of 0.001 mGal. This enables the 

Autograv to be used for both detailed field investigations and large scale 

regional or geodetic surveys. 

Accurate measurements are taken by 

simply pressing a key and under most 

conditions it takes under one minute to 

complete the reading. A series of readings 

of gravity measurements can be performed 

by setting the Autograv in the auto-repeat 

mode. 

The individual readings are displayed 

directly in mGals. The data is stored in 

Flash memory and can be sent to a printer, 

modem, recorder or PC. The station 

positions are measured with the integrated 

GPS capability; the internal GPS and 

precise clock for X-Y positions and earth 

tide corrections and external GPS input for 

Z-position and altitude corrections and 

real time free air and Bouguer corrections. 
                                                                                       Fig. 5-11 CG-5 Autograv gravimeter 

The LaCoste-Romberg and the Worden gravimeters are examples of 

unstable gravimeters that use zero-length springs. 

 

Vibrating-String gravimeter  

This type of gravimeters (Robinson,1988) uses the concept of dependence of 

vibration-frequency (f) of a fiber string supporting a suspended mass (M) on 

gravity (g). The relation is expressed by the following formula: 

 
                                     f = [Mg / 4x2m]1/2 

        

Where m is the mass per unit length of the string and x is the string length. 

Gravity changes are measured electronically. This type of gravimeters is still in 

the research state and they may become the future surveying-gravimeter. 
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5.3. Instrument Calibration 

       Observations with a gravimeter are recorded in arbitrary scale 

divisions. To convert these divisions to milligals, it is necessary to calibrate the 

instrument that is to find a scale-division-to-milligal conversion factor. One 

method is to measure gravity at two points where the gravity difference between 

them is known, such as two base stations or top and bottom of a building with 

allowance for the building contribution. Another method is the use of a tilt table. 

In this method, gravity component (g cosθ) is varied by varying the table tilt, 

where θ is the angle of tilt.  

      To illustrate the method assume that two readings were taken at the two 

points A and B where the gravity at each of them is accurately known. For 

example, let the readings be 120.53 mgal corresponding to 359.60 s.d. at station 

(A) and 57.30 mgal corresponding to 233.14 s.d. at station (B). By dividing the 

difference 63.23 mgal by the difference 126.46 s.d. we get the conversion factor 

0.50 mgal per scale division.  

 

5.4. Instrumental Drift 

       Gravimeters normally exhibit time-variant changes in their dial reading. 

The continual variation in the instrument reading observed over a defined time 

interval is caused mainly by the slow and continual creep of the gravimeter 

springs as they are not perfectly elastic bodies. The phenomenon of time-variant 

changes in the gravimeter reading, which are caused by mechanical and 

temperature effects, is known as instrumental drift. 

It so happened that a gravimeter reading is simultaneously affected by 

another time-variant gravity changes. This is the tidal effect due to the sun and 

moon gravitational attraction.  The tidal effects make the measured gravity 

fluctuate slightly with time introducing its own gravity component superimposed 

upon the other instrumental-drift component. The combined time variant-

changes over a certain time interval are normally displayed in the form of a 

graph. The separation of the two effects is facilitated by the fact that the tidal 

component changes in a cyclic manner. The drift, on the other hand, changes 

fairly linearly especially when the observation is made over short time-intervals 

(Fig 5-10). The total tidal- and drift-effects is in the order of a fraction of a 

milligal. An alternative way to separate the tidal fluctuation component is by use 

of a special equation depending on sun and moon positions in relation to the 

observation point.  

In a field gravity survey the instrumental drift is determined for each point in 

the survey area and corrected for accordingly. 
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The instrumental drift can be determined only by repeated observations at 

the same site. Gravimeter drift may be of uniform variation where it is estimated 

to be in the order of about less than one milligal per week, or irregular and high, 

reaching one milligal per day. In normal surveying, a base station is reoccupied 

at least once every three hours during a work session. This is a necessary 

procedure for the establishment of a representative drift-characteristic curve for 

the employed gravimeter.  

 

Fig. 5-10 Example of a drift curve 
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Chapter 6 

GRAVITY FIELD SURVEYING 

 

6.1. Land Gravity Surveying  

Gravity surveying involves measuring the gravity values at defined locations 

(the survey station-points or stations) which are distributed throughout the 

assigned survey area. In addition, other measurements and pertinent data must be 

made available. These are the supporting data which principally include location 

coordinates (latitudes and elevations) and times of the readings. These data are 

necessary for computing the gravity anomaly in a later processing stage. 

 

6.1.1 The Gravity Field Data  

The Earth gravitational acceleration (i.e. the gravity, g), measured at any 

point on the Earth surface, is the vector sum of a number of gravity components. 

The gravimeter reading changes with position (xyz coordinates), and with time 

(t) to some extent. These changes, as it is explained in the chapters 3 and 4, are 

due to a group of factors which are of global and local origins. 

In gravity field surveying, the gravity values are measured over a defined 

grid of points distributed over the survey area. The gathered gravimeter readings 

at the grid points (observation stations) form the basic raw data from which the 

gravity component caused by the subsurface geological anomaly is then isolated. 

As it is with the case of seismic field surveying, gravity field data may be 

divided into two types. These are: 

The gravity values furnished by the gravimeter measurements (the gravity 

readings). 

The supporting data which cover all other data necessary for data reduction. 

Most important of these are position and time coordinates (xyz and t) in addition 

to the full picture of the surface terrain of the survey area. 

A land gravity survey is normally conducted through two operation phases. 

These are: establishment of the base-station network and documenting the 

gravity readings at all of the station-points in the survey area. A location map 

with an adequate scale must be first made available (Fig. 6-1). 
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6.1.2 The Base-station network  

A base-station is a point located within, or near, the survey area at which the 

gravitational acceleration is precisely known. The base station serves two 

purposes. First, the gravity value at the base station is used as a reference value 

for computing gravity at all of the survey-points. In addition to that, the tidal 

effect and the drift behavior of the measuring-gravimeter can be determined. 

The main base station of the survey-area is established by gravimeter 

measurements adjusted to one of the world base stations of the International 

Gravity Standardization Net (IGSN71). 

In a given survey-area, a network of base stations can be established by a 

special procedure called (looping-method). To avoid drift effect we require a 

technique whereby two stations are, in effect, read at the same time (Fig 6-2).  

This is insured by applying the technique of the looping method which 

can be explained as follows.  

Suppose we have five base stations (A, B, C, D & E) in a survey-area 

(Fig 6-3).  Readings at these stations are made in the following order: (A, B, 

A, B, C, B, C, D, C, D, E, D, E, A, E, A).  

Usually a closing error occurs within each of the created polygon. In each 

loop, the closing error is determined and the error-value at each base station is 

Fig. 6-1 Model of a grid-map of the field station locations  
 

Base-station 
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re-adjusted by distributing the closing error over the observed gravity values. 

The mathematical procedure is explained in chapter 9. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
   

In a normal working day, a base station is reoccupied at least once every 

about three hours. Base station reoccupation is the way to determine gravimeter 

drift characteristics which shall be later used in the data reduction stage (Fig. 6-

4).   
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Fig. 6-2 Base station re-occupation technique for determining the short term tide-drift curves 

which are used to establish the base-station network.   

 

Fig. 6-3 Looping-method applied in the process of establishing a base-network made-up 

of five base stations ( A, B, C, D, & E )  
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It is a good practice to determine the gravimeter drift characteristics before 

the start of the survey. This is done by reading the gravimeter at a certain site 

once, or few times, a day for several days. However, base-station reoccupation 

procedure must always be followed during the normal daily survey work. 

 

6.1.3 The Survey Gravity Readings 

The most important pre-requisite in any gravity survey project is an 

adequate location map. The survey design parameters (station locations and 

spacing) depend on the survey objectives. Station spacing depends on whether 

the survey is reconnaissance or detailed and whether it is regional or local. 

Station locations are normally defined by the corner-points of a square grid in a 

uniform grid map. The length of the side of the grid-cell is function of the size of 

the anticipated geological anomaly. In oil exploration it is in the order of 0.5-1.0 

km, while in mineral exploration, the side-length is in the range of 10-50 m. This 

becomes in the order of 1-5 m. in microgravity surveys where the objective is to 

locate small-scale features such as subsurface cavities, buried archaeological 

objects or relatively shallow structures of engineering interests. Survey stations 

may be irregularly spaced when a sufficient number of points, of known 

coordinates, are available in the area. 

The daily work is started by taking a reading at the nearest local base station. 

This is followed by reading the rest of the survey stations. The process is 

continued with reading of the base station at regular intervals of about 2-3 hours 

throughout the working day. Each day is started by reading the base station and 

concluded by reading that base station at the end of the day. 
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Fig. 6-4  Base station re-occupation during normal survey work   
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The gravity reading and the time at which it is taken are systematically 

tabulated in the field notebook. The xyz-coordinates are also noted alongside the 

gravity and time readings. An example of a field data-sheet is shown in Fig. 6-5. 

 

Station 
number 

Longitude Latitude Elevation 
Time 

hours & 
minutes 

Gravimeter 
reading 

Remarks 

Base-stn.        

Stn-1       

Stn-2       

Stn-3       

Stn-4       

Stn-5       

Base-stn.        

Stn-6       

Stn-7       

…….       

Fig. 6-5 An example of a field data-sheet for documenting gravimeter readings and other 

supporting data. 

 

 

6.1.4 Station Locations and Elevations  

Station locations and elevations may be determined from the location map 

which is showing the elevation as numeric data or as contour topographic map. 

Modern electronic satellite navigation systems can be applied for this purpose. 

To get an accuracy of 0.1 mgal in relative-gravity measurements, elevation 

difference from the datum level must be of an accuracy of within 30 cm. This is 

deduced from the fact that the gravity change is 0.3 mgal per meter change in 

height. 

There are three basic ways to determine elevation. These are: the 

conventional optical (rod and telescope) method, the use of the aneroid altimeter 

and the use of topographic location maps. 

 

6.2. Marine Gravity Surveying  

There are two ways to conduct a gravity survey at water-covered areas. 

These are done by using gravimeters placed at sea floor or on board of a ship. 

The sea-floor measurement is done using gravimeters sealed in special water-

tight containers and operated by remote control systems. The on-board method, 

which is less accurate and faster to operate, suffers from problems caused by the 

ship movements.  
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6.2.1 Sea-Floor Measurements 

This type of surveying is commonly conducted by use of the Lacoste-

Romberg gravimeter, kept in a water-tight container. It is lowered into sea from 

a ship and operated through electric cables by remote-control system. This 

includes instrument leveling, clamping and unclamping of the instrument. 

Most of sea-floor gravity surveying is conducted on continental shelves 

where water-depth is about 200 meters.  The main difficulty this method faces is 

the effect of sea-waves, which can cause disturbance to the instrument especially 

in shallow water areas. In such environments measurement accuracy of about 0.2 

mgal can be achieved in 10-15 minutes. The water depth of the observation point 

is measured by an echo-sounder. 

 

6.2.2 Shipboard Measurements 

The shipboard gravity measurements are done by gravimeters with special 

mountings that can provide the necessary protection for the gravimeter from 

being disturbed by the ship rolling and pitching. 

As the boat moves along a survey-traverse, the on-board gravimeter system 

is made to output a continuous gravity record. This is achieved by an automatic 

beam-adjusting system which detects any movement of the gravimeter beam, 

and activates a mechanical device that restores the beam position. The gravity 

value is recorded from measuring the electric current required for the beam 

restoration.  

Although it is relatively faster in covering a marine gravity survey, this 

method suffers from some problems introduced as a result of the non-static 

nature of the survey-ship. The on-board gravimeter responds to the resultant of 

all of the gravitational changes including those created by the motion of the ship. 

These are generated from three main sources: 

 - Pitch and roll of the ship that can tilt the gravimeter. 

- Vertical motion (rise and fall) of the ship. 

- Ship travel-motion over the curved sea-surface path. 

To overcome the pitch and roll effects, the gravimeter platform is kept in 

horizontal-level by free-swinging gimbals with additional gyroscopic 

stabilization system.  

The imposed vertical-acceleration effect is treated in two ways. First, the 

gravimeter beam is designed in such a way as to be with a long-enough natural 
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period (longer than sea-wave period) and by a damping device fitted to the 

gravimeter-beam (Fig. 6-6). 

 
 
 
         
 
 
 
        
 
 
 
 
 
 
 
 
 
 
 

For the third type of effects, the acceleration contribution from the ship 

travel motion is function of the ship travel-velocity (speed and direction). This is 

corrected for in the processing stage. The gravity correction which compensates 

for ship-movement is called Eotvos Correction, after Baron Von Eotvos (1848-

1919). 

 

6.2.3 Eotvos Correction 

Marine gravity measurement made by a gravimeter on board of a moving a 

ship is influenced by additional forces created as a result of the ship motion 

during the measuring process. Unlike land surveying, where the gravimeter is 

stationary during the measuring process, a shipboard gravimeter is moving with 

a certain cruising velocity (speed and direction) while it is measuring. In its 

motion, the ship (Fig. 6-7) moves over the sea surface along a curved path which 

forms a segment of a great circle of the Earth. Thus a gravimeter on board of a 

cruising ship would experience a centrifugal force (acceleration) due to its 

motion over a circular path. In addition to that, there is another factor that 

influences the gravimeter reading and that is the effect of the ship velocity on the 

centrifugal force (centrifugal acceleration) created by the Earth rotation about the 

Spring 

Hinge Beam 

Damping 

 system 

mass 

Fig. 6-6 Principle of beam-damping system fitted to shipboard gravimeter. 
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polar axis. As a result, the gravimeter will be measuring different values of 

gravity from that detected by a stationary gravimeter located at the observation 

point. The correction which is made to remove the effects due to ship motion 

from the shipboard-gravimeter reading is known as Eotvos correction. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In case where the measuring instrument is moving with a certain velocity 

while it is in the measuring process, it experiences centrifugal force due to this 

motion. This will incur a change on the gravity value if it were measured while it 

is at rest. 

An eastward component of the ship velocity would add-up to the Earth 

rotation-velocity causing increase of the centrifugal acceleration which in turn 

causes the gravity reading to decrease. An opposite effect results from a 

westward velocity-component. The gravity reading must therefore be corrected 

for this effect. The correction is called Eotvos correction. 

The Eotvos correction (EC) in milligals, due to the velocity of the ship 

carrying the gravimeter, is given by Telford, et al ,(1996): 

 

EC = 4.040 V cosΦ sin α + 0.001211 V2 

 

Fig. 6-7 Generation of an additional centrifugal acceleration due to the motion 

of the gravimeter-carrying ship over a segment of a great circle and at the same 

time rotating about the Earth polar axis . 
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Where V in km/hour is the ship velocity, Φ is the latitude of the 

measurement location, and  α in degrees, represents the ship-path bearing which 

is measured from the geographical North. 

The value of EC is positive (to be added to the measured gravity-value) 

when the ship is moving in westerly direction, i.e. when its velocity (V) has an 

East to West component, and it is negative when the ship is moving in easterly 

direction. The finally corrected value will be the value of gravity corresponding 

to that obtained for a stationary observation point at that location. 

In summary, marine surveying may be carried out through measurements of 

gravity on sea floor or on sea surface. Each of these two methods has its own 

merits and problems. The sea-floor method needs gravimeters enclosed in water-

tight casing and fitted with remote-control systems for their operation. This 

method is of high sensitivity but it is slow because of the lengthy transportation 

of the gravimeter between observation stations. 

The other shipboard method is the more widely used technique where the 

gravimeter is mounted on board of a moving ship. In this case, a specially 

stabilizing instrument-base, must be provided to lessen the effect of ship due to 

rolling and pitching movements caused by the sea waves. Another and more 

important feature of this method is the gravity effect caused by the ship velocity 

of travel. Thus an eastward velocity-component would add-up to the Earth 

rotation-velocity causing increase of the centrifugal acceleration which in turn 

causes the gravity reading to decrease. An opposite effect results from a 

westward velocity-component. The measured gravity in this case must be 

subjected to correction called Eotvos correction. 

 

6.3. Airborne Gravity Surveying 

As in the seaborne gravity surveying, airborne surveying suffers from the 

non-static nature of the measuring instrument. Error values in the airborne 

measurements are larger than those found in seaborne surveying due to more 

rapid change in aircraft altitude and other types of motion.  

Experimentation with the use of helicopter began 1971. Reduced flight-

speed in this case leads to improvements in the accuracy of both of Eotvos 

correction and navigation data. In calm weather and careful navigation, the 

accuracy in the range of few milligals can be obtained. 

There are further two types of effects resulting from airborne gravity 

measurements. These are the aircraft height above land surface and the terrain 

gravity effects. Both of these factors lead to diminishing of the detected gravity 
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anomalies. Due to these problems, helicopter gravity surveying is used for 

reconnaissance surveying where the accuracy is in the range of few milligals. In 

such practices, the gravimeter is fitted with the appropriate devices that secure 

stability and reduce external acceleration changes. 

 

6.4. Microgravity Surveying 

On the basis of the size of the objective exploration targets, a gravity 

surveying may be rated as large-, medium-, or small-scale survey projects. 

Large-scale gravity surveying projects aim at exploring features such as shape of 

the Earth, crustal-thickness variation, and isostatic compensation. The medium-

scale surveying, on the other hand, includes studying geological structures such 

as igneous intrusions, sedimentary basins, hydrocarbon traps, and ore bodies.  

In the later years, gravity surveys were designed to detect and delineate 

small scale structures of the type which serve engineering and archaeological 

purposes. In particular, fracture zones, subsurface cavities and buried ancient 

relics. Gravity surveying designed for this type of purpose is commonly referred 

to as microgravity surveying. The type of gravimeter used in microgravity 

surveys is one which is capable of detecting gravity changes as small as one 

microgal (= 0.001 milligal). 

The main features of a microgravity survey are the closely-spaced 

observation points (1-5 meter) and the high measurement precision in detecting 

gravity anomalies which are in the order of 0.001-0.002 milligal.  

Interpretation of microgravimetric data is based on relative gravity 

measurements and thus no need to have absolute gravity values for the 

interpretation process. 



Chapter 7 

GRAVITY DATA PROCESSING 
 
 

 

 

Gravity values measured in the field are in fact representing the combined 

effect of the geological structure of the material below the observation point 

superimposed on which are gravitational effects from other sources. As we have 

explained previously (Chapters 3 and 4), these effects are space-variant and 

time-variant in nature. Thus, to isolate the gravity contribution of the subsurface 

geological anomalies, the objective of the exploration geophysicist, all effects 

other than those due to the geological changes, must be removed. This is 

achieved by subjecting the gathered field data to a series of predefined 

corrections which are collectively referred to as gravity data processing.  

The process of removing all the non-geological effects from the raw 

observations is also known as data reduction, since they reduce the measured 

(raw) data to what would they be had the gravity been located on the geoid 

surface which is represented by the sea level. In effect, processing of the 

measured gravity data is removing all gravity contributions caused by material 

found above the sea level as well as the time-variant changes (Fig. 7-1). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 7-1 Objective of the reduction processes of the observed gravity data is 

production of the Bouguer anomaly. 
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The processing steps which are normally carried out in processing of gravity 

raw data are as follows: 

 

7.1. Instrument Calibration and Drift Correction 

Gravimeter measurements are usually quoted by the instrument scale-

divisions (sd.). Thus, the instrument reading must be converted into gravity units 

which are usually the milligal units. This is done by multiplication of the reading 

(in sd. units) by the instrument calibration factor which is normally determined 

at the start of the survey. The calibration factor is expressed in (milligal/sd) 

units. 

During fieldwork the instrument is read at a certain base station regularly at 

2 to 3 hour intervals. The gravimeter reading is plotted against time to obtain the 

instrumental drift characteristics curve. From this curve, the instrument reading 

can be determined at any time (between two consecutive points) by 

interpolation, assuming that drift change is linear. As we have already explained 

(Chapters 5 and 6), time-variant gravity changes include both of the instrumental 

and tidal effects and their combined effect is expressed by the so-constructed 

drift curve (Fig. 6-10). 

Having constructed the drift curve, the gravimeter reading made at each 

gravity station of the survey area is corrected for the instrumental-drift of the 

gravimeter used in the survey. 

 

7.2. Latitude Correction 

There are two global related factors that cause the earth gravity to change 

with latitude. These are the Earth flattening and its rotation about its polar axis. 

This has led the Earth gravity to increase as the observation point moves from 

the equator towards either of the two poles. For this reason, the Earth gravity, 

measured at sea level, increases uniformly with the increase of latitude (Fig. 

7.2). 

Normally, the GRS67 formula in which gN(Φ) (shown in Fig 3-7) would 

give the value of gravity (gN) at sea level at any point having latitude (Φ) over 

the Earth surface. The value gN(Φ) is considered to be the universal reference 

datum relative to which the final gravity anomaly is computed.  

Latitude correction is achieved by subtracting the normal gravity (gN), from 

the observed gravity value (g0) to obtain (Δg0) which is called the observed 

gravity anomaly.  Thus: 
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Δg0 = g0 - gN 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

It is important to note that if the gravity project contains mixed data in 

which a data-set was corrected using the 1930-Formula and another set corrected 

by GRS67 formula, unification of correction processes must be done. This is 

performed using the following correction formula (Kearey and Brooks, 1987, 

P151): 

 
gN(1967) - gN(1930) = 13.6 sin2 Φ - 17.2 mgal. 

 
 

7.2.1 Rate of Change of Normal Gravity 

The gN value at any observation point of latitude (Φ), can be obtained from 

the tables which are prepared from the GRS67 formula, or alternatively by 

computing the value based on another known value (reference point), using the 

formula for the rate of change of the normal gravity. 

The rate of increase of the normal gravity with latitude ∆gN/∆Φ can be 

obtained from differentiating the gN(Φ) equation. Within the accuracy of the 

gravimeter measurements we can neglect the terms in sin4 Φ, as this will not 

affect the result too much, to give: 

     Fig. 7-2 The Earth latitudes and longitudes serve as location   

     coordinates for station points in gravity surveying. 
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               ∆gN / ∆Φ = 978.0327 * 0.005279 sin2Φ gal/radian   
 

or,           ∆gN / ∆Φ = 5163 sin2Φ mgal/radian   
 
or,           ∆gN / ∆Φ  = 90.11 sin2Φ mgal/degree 
 

As these formulae indicate, the rate of change varies with the latitude. At 

latitude of 45 degrees, the rate of change reaches its maximum value of 90.11 

mgal/degree, and it is zero at the poles and at the equator (Fig. 7-3).  

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Since gN decreases in the direction of the equator, the gravity difference 

between the observation point and the reference point must be added to that of 

the observation value if the observation point is located at a latitude nearer to the 

equator than that of the reference point. 

Taking the Earth mean radius to be 6367.5 km which is the mean of the 

equatorial radius (6378.160 km) and the polar radius (6356.775 km), the Earth 

circumference becomes 40008 km and the distance corresponding to one degree 

becomes 111.13 km (40008/360). The rate of change can therefore be given as 

Fig. 7-3 Rate of change of the normal gravity value as function of latitude. 
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h 

h 

Sea level 

Fig. 7-4 Free-air correction (FAC) 
 

gravity change in milligals per one meter of the distance measured in the N-S 

direction. That is: 
 

             ∆gN / ∆s = 0.000811 sin2Φ mgal/meter  
 

 

7.3. Elevation Corrections 

Change in elevation causes a corresponding change in gravity. Change in 

gravity that occurs as a result of change in elevation of the observation point is 

function of thickness and density of the material found between the observation 

point and the datum level, which is normally taken at mean sea level. 

The correction may be divided into three parts; which are the free-air, 

Bouguer, and terrain corrections. 

 

7.3.1 Free-air Correction (FAC) 

This corrects for the change in gravity due to change in the height of the 

observation point. According to the universal law of gravity, gravity decreases as 

the distance from the Earth center increases. The change in gravity due to change 

in elevation is rated by 0.3086 mgal/meter (see chapter 4). Thus to reduce the 

change in gravity to sea level, a gravity value measured at elevation (h) meter 

must be done by increasing the observed gravity by 0.3086h milligal (Fig 7-4). 

Correction of observed gravity to what it would be at sea level is called free-air 

correction, FAC. 
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After correction we obtain an anomaly value ΔgFA called free-air gravity 

anomaly expressed as: 

 
ΔgFA = ΔgO + FAC 

 
Hence 

    ΔgFA = gO - gN + 0.3086h  
 

The correction is positive for observation points above sea level and 

negative for observations which are below it. 

 
 
 

7.3.2 Bouguer Correction (BC) 

The FAC accounts only for change in elevation and no account is made for 

the gravity change contributed by the rock-mass found between the sea level and 

the observation point. This contribution is computed on the assumption that an 

infinite horizontal rock slab of thickness equal to that of the material exists 

between the observation point and sea level (explained in chapter 4). 

The correction (called Bouguer correction, BC) is given by: 

 
BC = 2πGρh = 0.0419ρh mgal, 

 
 where (h) is elevation in meters and (ρ) density in gm/cc (Fig 7-5). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7-5 Bouguer correction (BC) 
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It is to be noted here that the combined FAC and BC correction is forming 

one correction normally referred to as the combined elevation correction (CEC) 

which is defined by the combined formula: 

 

CEC = (+0.3086-0.0419ρ ) h. 

The Bouguer correction for sea surface measurements (BCSS) is equivalent 

to replacement of the water layer (water-depth d and density ρW) by rock layer 

(density ρR) giving for sea surface observations: 

 
BCSS = 2πG (ρR - ρW)d 

The Bouguer correction (BC) must be subtracted from the observed gravity 

on land, whereas it must be added to the gravity values observed over sea 

surfaces since it is representing replacement of the water layer by the more dense 

rock material. Bouguer correction is therefore negative on land and positive over 

seas. 

After applying the Bouguer correction, we obtain Bouguer gravity anomaly 

(ΔgB), in milligals, which is given by the expression: 

 
ΔgB = ΔgFA - BC 

 
Hence   ΔgB = gO - gN  + 0.3086h - 0.0419ρh  
 

In general, Bouguer gravity values are negative over most of the continental 

areas and positive over oceans. In and around coastal regions, Bouguer gravity 

values are near zero-level. This is a common worldwide observation.   

 

7.3.3 Terrain Correction (TC) 

The Bouguer correction is computed on the assumption that the rock 

material found between the observation point and the geoid surface is in the form 

of a horizontal infinite slab. Since, in actuality this is not the case, a correction is 

required to allow for the irregular topography of the earth surface around the 

observation point. 

Elevated ground (such as hills) near an observation point creates a vertical 

component in gravity attraction reducing the gravity value at that point. Holes 

and valleys on the other hand represent lack of material in parts of the assumed 

horizontal rock-slab. In effect, these also create vertical components which 

would reduce the gravity value. Thus, in normal situations, terrain correction 
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(TC) which is always positive is introduced to compensate for the topographic 

irregularities existing around the observation point (Fig. 7-6). 

The final Bouguer gravity anomaly which is including the terrain correction 

(TC) will take the form: 

 
 ΔgB = gO - gN + 0.3086h - 0.0419ρh + TC  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The classical method used in computing terrain correction is the use of the 

special chart (invented by S. Hammer in 1939) with an associated set of tables. 

Hammar chart consists of a set of concentric circles which are divided by radial 

lines forming compartments of varying areas.  

Terrain gravity contributions of the compartments are computed based on 

the following computation approach: 

Consider a solid cylindrical disc of thickness (d) and radius (r), (Fig. 7-7). 

The gravity attraction of a solid disc (gD) calculated at the center of its flat 

surface (see chapter 9 for derivation) is given by: 

 
GD = 2π Gρ[d + r - (d2+r2)1/2] 

 

  where r is the disc radius, d is its height and ρ is its density. 

 

 

Fig. 7-6 Terrain correction (TC). 
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Now consider a ring-disc as being formed from subtraction of a solid 

cylindrical disc (radius r1, say) from a larger disc (radius r2) having a common 

axis with the smaller one (Fig. 7-8). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The gravity contribution (gr) at the center of the flat surface of the ring-disc 

is obtained from subtracting the gravity effect of the small cylinder (radius r1) 

from that of the larger cylinder (radius r2), thus: 

 

Fig. 7-7 Cylindrical disc used as basis for computing the terrain correction. 
 

d r 

d r2 

r1 

Fig. 7-8 Cylindrical ring-disc is formed from subtracting two solid cylinders 

of common axis 
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gr = 2πGρ[r2-r1 + (d2+r1
2)1/2  - (d2+r2

2)1/2] 

Now, if the ring is divided into a number (N) of equal segments (Fig 7-9), 

the gravity contribution (gN) of each segment (compartment) is given by: 

 
gN = gr / N 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Hammer tables (1939) give terrain correction values computed on the basis 

of circular flat-topped cylinders made up of material of density (ρ) equal to 2.0 

gm/cc (Fig. 7-10). 

 
 
 
 
 
 
       
 
 
 
 
 
 
 
 
 

d 

r2 

r1 

Fig. 7-9 Cylindrical ring-disc divided into eight equal sectors used to 

derive the formula for gravity effect of a sector of a ring disc at the central 

point (P). 
 

P 

r1 

Fig. 7-10 Part of the Hammer chart. The complete chart consists of zones (B, C, D, 

…, M) varying in radius from 2m for zone-B to 22km for zone-M (Kearey and 

Brooks, 1987,pp 152-153) 
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One way to compute terrain corrections is by use of Hammer chart and 

equation for gr; the one mentioned above. The computation procedure is done by 

placing the center of Hammer chart over the observation point on the 

topographic map of the area. The chart must be drawn at the same scale as the 

topographic map. The average elevation of the topography within a segment is 

estimated and the difference (call it Δh) in elevation of this average from that of 

the observation point is obtained. Now the terrain correction for that segment is 

found by substituting Δh for d in the expression for (gr) and dividing the result 

by the number (n). The process is repeated for all other compartments in the 

chart then the contributions of all compartments are summed up to give the total 

terrain correction (TC) for that observation point. The density term (ρ) is 

substituted by the mean density of the material covered by all the compartments 

entering in the computation. 

The more practical procedure than using Hammer chart and equation is by 

using Hammer chart and the associated tables (Dobrin, 1960, Fig. 11.9 and Table 

11.1). The chart is first printed on transparent plastic sheet at the same scale as 

the topographic map of the survey area. The center of circles is placed over the 

observation point and the average elevation within a compartment is estimated 

from the contours seen through the chart-sheet. The difference in elevation (Δh) 

between the estimated average and the station elevation is determined. With this 

value the TC for that compartment can be read from the tables associated with 

the chart (Fig. 7-11).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

r

2

1 

r

1

2

1 

Fig. 7-11 The procedure followed in calculating terrain correction by use of the 

Hammer chart. Average elevation of the yellow compartment is estimated from the 

contours crossing it. 
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The terrain correction is slow and tedious work especially when it is done 

manually as has been done in the olden days. Computer based computations, as 

it is normally done nowadays, require digitization of the topographic elevation of 

the survey area. 

In area where the topography is nearly flat, terrain correction may not 

exceed 1 mgal whereas in areas of rugged terrain containing mountains, steep 

cliffs and valleys, the correction may reach appreciable levels. In certain cases 

terrain corrections may be unnecessary especially when the computed values are 

less than the desired accuracy of the Bouguer gravity values. Computation 

decision is based on computation-tests which are conducted in certain parts of 

the area to find out whether TC values are small enough to be neglected or not. 

 

7.4. Isostatic Correction 

A Bouguer anomaly value is obtained with a group of correction steps which 

are in effect removing all effects of material existing above sea level and 

replacing the ocean water with material of average crustal density. In doing that 

we are assuming that there are no density variations below sea level except those 

due to the relatively shallow geological structures which the exploration 

geophysicists are looking for. 

According to the isostatic theory there are, in certain parts of the Earth crust, 

indications of lateral density variations on large scale-extent which would cause 

corresponding changes in the Earth gravity. This is supported by the large and 

negative Bouguer anomaly normally observed over continental blocks and some 

mountainous areas.  

Airy’s isostatic model for the Earth’s crust suggests that mountain ranges 

(such as the Alps and the Rocky Mountains) have roots bulging through the 

upper Mantle of the Earth. Such roots (being of lower density relative to its 

surrounding) would cause the Bouguer anomaly to decrease by an amount 

depending on the shape of the root and its density contrast. Thus according to the 

structural model suggested for the Earth crust existing below the survey area, 

gravity changes (due to these large-scale crustal features) can be determined and 

the Bouguer anomaly is corrected for. In so doing, the effects of the lateral 

density changes as predicted by the isostatic theory are removed (Fig. 7-12).  

The isostatic anomaly (ΔgI) is thus defined to be the Bouguer anomaly (ΔgB)  

added to which is the isostatic correction (IC), that is: 

 
ΔgI = ΔgB + IC 
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Under-compensation and over-compensation of topographic features are 

reflected by positive and negative isostatic anomalies respectively. A 

topographic feature which is perfectly compensated is expected to give zero 

isostatic anomaly (more details are found in chapter 9).  

The basic correction processes usually followed in normal gravity surveying 

can be summarized as shown in the following sketch (Fig. 7-12): 

 

7.5. Data Reduction of Marine Gravity Data 

There are two ways to conduct a gravity survey at sea. The more practical 

and faster method is to measure gravity by a gravimeter mounted on a moving 

ship. The other alternative method is to carry out the measurements by a 

gravimeter resting on the sea-floor. As we have seen from the previous chapter 

(Chapter 6) each of these two methods has its own advantages and 

disadvantages. However in either case, the gravimeter readings must undergo 

certain reduction processes in order to derive the Bouguer anomaly in a form 

ready for the following interpretation work.     

 

 

 

 

Fig. 7-12 Principle of isostatic correction. 
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7.5.1 Reduction of Shipboard Gravity Data 

For the case of gravity measurements made on board of a stationary ship, the 

Bouguer gravity anomaly (gB) is computed in such a way as to compensate for 

the sea water-body existing below the ship. To start with, no free-air elevation 

correction is needed here since the measurements are located at sea level. 

However, the Bouguer gravity anomaly (ΔgB) is computed according to the 

following equation:  

 
ΔgB  =   gO - gN + 0.0419 d (ρR - ρW)  

Fig. 7-12 The processing sequence normally followed in gravity data-reduction. 
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  gO is gravity value in milligals observed (measured) at a gravity station 
location 
  gN is normal gravity value, computed from GRS67 Formula 
 
  ΔgO = gO - gN , Observed anomaly,  
  ΔgF = gO - gN + 0.3086 h , Free-air anomaly,  
  ΔgB = ΔgF - 0.0419 ρh + TC , Bouguer anomaly,  
  ΔgI = ΔgB + IC  , Isostatic anomaly,  

 
  FAC = 0.3086 h , Free air correction 
  BC = - 0.0419 ρh , Bouguer correction 
  TC = Terrain correction 
  IC  =  Isostatic correction 
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Where gO and gN are respectively the measured and normal gravity in 

milligals. Also ρR and ρW represent the density in gm/cc for rock and sea water 

respectively, and  (d ) in meters, is the sea-depth under the observation point.  

This formula is derived on the basis of replacement of the sea water by rocks 

of average crustal density. In practice, the values 2.67 gm/cc and 1.03 gm/cc are 

used for ρR and ρW respectively.  

In case gravimeter measurements are read during the ship motion, the 

Eotvos correction (EC) must be introduced in the correction formula. The 

correction is algebraically subtracted from the shipboard gravity measurement to 

give: 

 
ΔgB  =   gO - gN + 0.0419 (ρR -ρW)d - EC  

  

Eotvos correction can result in sizeable errors in this computation due to 

difficulty in controlling speed and direction of the ship movement. However, the 

accuracy of Bouguer anomaly of a shipboard gravity is expected to be within one 

to two milligals. 

 

7.5.2 Reduction of Sea-Floor Gravity Data 

For the sea-floor measurements, the observed gravity value (gO) is corrected 

to get the corresponding Bouguer gravity anomaly (ΔgB) according to the 

following equation:  

ΔgB  =   gO - gN + 0.0419 d(ρR + ρW) - 0.3086d 
 

Where ρW and ρR are density of water (=1.03 gm/cc) and rocks (about 2.67 

gm/cc) respectively, and d in meters is the water depth at the observation site. 

The quantities gB, gO and gN are all in milligals. 

Derivation of this formula (Fig. 7-13) is based on computing gravity change 

in moving the measurement point from the sea floor to the sea surface and 

replacement of the water layer of density (ρW) by rock material of density (ρR). 

 

7.6. Accuracy of Bouguer Gravity Data 

The end product of the field gravity-measurement subjected to a set of data 

reduction processes, is the final Bouguer anomaly map. This map will show the 

variation in gravity caused by the subsurface geological structures which are 

showing lateral density variations. The amplitude of the Bouguer anomaly 
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depends not only on the value of the density contrast but also on shape and depth 

of the causing geological anomaly. Bouguer gravity maps are normally displayed 

in the form of gravity contours drawn with an adequate contour interval. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bouguer anomaly maps serve as the basic data used in the interpretation 

phase to explore the subsurface geological structures such as anticlines, salt 

domes, ore-bodies, or even subsurface empty cavities. Being dependent on 

instrument measurements in the field data acquisition stage of the survey work 

and on approximations in the following processing stage, Bouguer anomaly 

value is expected to bear certain amount of error. In order to evaluate the 

accuracy of these data on which our interpretation reliability depends, it is 

important to identify the error sources and assess the extent of their effects. 

 

(1) Error in Instrument Reading  

Modern gravimeters which are carefully drift corrected can be read with 

accuracy close to 0.01 mgal. This forms a measurement sensitivity in reading 

changes in the Earth gravity reaching (10-8) which is adequate for normal gravity 

surveys. In practice, the gravimeter gives the readings in scale-divisions which 

are converted into milligals using the instrument calibration factor expressed in 

milligals per scale division. 

 

Fig. 7-13 Bouguer correction for the case of sea-floor gravity measurements 
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(2) Error in Location  

According to the normal gravity formula (gN), the rate of change of the Earth 

gravity (ΔgN) with respect to distance (s), measured in the N-S direction, is given 

by: 

 
ΔgN / Δs = 0.811 sin 2Φ  mgal/km 

 

The maximum value of the change rate is at latitude of 45°, where it attains 

a value of 0.811 mgal/ km, or 0.0008 mgal/m.   

From this result it can be concluded that an error in location of an 

observation point of one meter may introduce a corresponding error of 0.0008 

milligals in the applied value of gN. Such an error becomes even smaller in 

magnitude as the observation point moves towards the equator or towards the 

poles. It is therefore apparent that location coordinates can tolerate a relatively 

large error as far as latitude accuracy is concerned. Thus an error in location of 

say 100 meter in the N-S direction would introduce less than 0.1 mgal. 

 

(3) Error in Elevation 

The equation for the elevation correction includes two parameters, the 

contrast in density (ρ), and elevation (h). Thus considering ρ = 2.0 gm/cc, we 

have for the combined elevation correction (CEC): 

 
CEC  = 0.3086 h - 0.0419 * 2.0*h = 0.2248 h 

 

This formula shows that the error in elevation would cause a corresponding 

error in the computed Bouguer-anomaly value of about 0.2 mgal/meter. Hence to 

attain a Bouguer value to the accuracy of 0.1 mgal, elevation must be accurate to 

within 50 cm.  

 

(4) Error in Terrain Correction 

The errors introduced in computing the terrain corrections come from the 

rough estimation of the mean height of the topography and from the uncertainty 

in the value of the rock density used for the correction. In general, this varies 

from (0.05) to (0.30) mgals (Bott and Masson-Smith, 1957). 
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Chapter 8 

THE GRAVITY ANOMALY 

 

 

8.1. Concept of the Gravity Anomaly 

         As far as gravity data is concerned, a geological anomaly is defined as 

any lateral change occurring in the subsurface geology of the area. This can 

happen as a result of either change in density of a horizontal layer or change in 

the horizontality of a constant-density layer (Fig. 8-1).  In either case, such a 

geological anomaly would create the corresponding disturbance in the gravity 

field, known as the gravity anomaly. It is called regional gravity anomaly when 

it describes large-scale geological changes and residual anomaly when the 

changes are of localized nature.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8-1 A gravity anomaly is created by a local geological anomaly with lateral changes 

in depth or in density or with both. 
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A gravity anomaly at an observation point is formally defined as the 

deviation of the gravity value (corrected to the Earth ellipsoid) from the 

theoretical value computed at that point. The type of anomaly depends on the 

corrections made in the data reduction. The free-air anomaly is obtained if only 

the free-air correction has been applied to the observed data. The Bouguer 

anomaly is, on the other hand, obtained when both of free-air and Bouguer 

corrections have been applied. 

 

A Bouguer anomaly (non-zero gravity value) indicates lateral density 

changes. If the density of the rock material below sea level varies only with 

depth (i. e. no lateral variations), no Bouguer anomaly is created, that is the 

anomaly is of zero value. Local density contrast (surplus or deficit) of the 

material below sea level would give non-zero Bouguer anomaly. 

 

8.2. Computation of Gravity Anomalies 

Study of gravity anomalies associated with anomalous masses of simple 

geometrical shapes is useful to gravity interpreters. Information on the 

theoretical function of the gravity anomaly of certain geological models is very 

useful since it gives indications on depth, shape, and density distribution of the 

anomalous mass. 

In the field measurements, gravimeters measure Δg which is the vertical 

component of the gravitational acceleration due to an anomalous subsurface 

mass. The vector quantity (Δg) is function of its depth, geometrical dimensions 

and density contrast (ρ) which is the difference in specific gravity between the 

material of the body and that of the surrounding medium. 

Here-below, mathematical formula of the vertical component (Δg) for the 

most common simple geometrical models are theoretically computed. Derivation 

is based on Newton's Law of gravitation (F=G m1 m2 /r2) and Newton's second 

law of motion which relates the acceleration vector (Δg) to the attracting mass of 

the model.  

The models dealt with here are presented under the following categories: 

 Spherical shapes 

 Cylindrical shapes 

 Sheets and Slabs 

 Rectangular parallelepipeds 

 Bodies of irregular shapes 
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8.3. Spherical Shapes 

8.3.1 Point Mass 

The vertical component of gravity effect Δg of a point mass (Δm) buried at 

depth (z) which is at distance (r) from an observation point (P) located on the 

surface, is given by (Fig. 8-2): 

 
Δg = G Δm cosθ / r2   

 
or, since   r = (x2 + z2)1/2 

 

Δg  = G Δm z / (x2 + z2)3/2 

 

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

8.3.2 Spherical Shell 

   Consider a spherical shell (hollow sphere) of radius (R), density contrast 

(ρ), and thickness (t). The gravitational attraction at a point located at distance 

Fig. 8-2 The gravity anomaly due to a point-mass (A) and due to a sphere (B) 

at depth z. 
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(r) from its center is derived by considering an elementary ring (width δs = Rδθ) 

cut from the sphere at right angles to the distance (r), as shown in Fig. 8-3. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Choosing the ring to be perpendicular to the line joining the observation 

point (P) with the center of the spherical shell, insures that each point 

(infinitesimal element) of the ring is at the same distance (s) from the point (P). 

Thus, at (P), the gravity component [Δg]ring (which is acting along the distance 

(r) towards the shell center) due to the elementary ring  is given by: 
 

[Δg]ring = (G. Rδθ. t. 2πRsinθ.ρ / s2 ) cosΦ  
 

By making the substitutions:  

cosθ = (R2 + r2 - s2) / 2Rr, 
 

cosΦ = (s2 + r2 - R2) / 2sr, 
 

sinθ dθ = s ds / Rr , 

and integrating with respect to the variable (s) from (s=r-R) to (s=R+r), we 

get the gravity effect at the external point (P) for the whole shell. That is: 

 
[Δg]sh = 4πGρtR2/r2 

or 

 [Δg]sh = Gmsh/r2 

where msh  is the mass of the complete spherical shell. 

s 

r 

Φ 

θ 

δθ 
R 

P 

Fig. 8-3 An elementary ring cut from a spherical shell.  
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This result has shown that a spherical shell has the same gravity effect of a 

point mass having the mass of the spherical shell located at its center. It can be 

also shown that the gravity effect at a point located inside the shell is zero 

regardless of the point-distance from the shell center. This can be proved by 

carrying the integration from s=R-r to s=R+r, 

 

8.3.3 Solid Sphere 

By considering a solid (full) sphere to be consisting of infinite number of 

elementary thin shells, the gravity effect of the sphere at an external point (P) at 

distance (r) from its center is obtained from integrating  the gravity effects of all 

of the infinite number of shells considered to be making up the sphere (Fig 8-4). 

Since the distance (r) is the same for all shells, the gravity effect (Δg) of the 

solid sphere at (P) is obtained by multiplying the summation of the shell masses 

(mass of the sphere, m) by G/r2. That is: 

 
Δg = Gm/r2 

 

This significant result tells that, as in the case of a spherical shell, the gravity 

effect of a solid sphere, at an external point located at distance (r) from its 

center, is the same as that due to a point-mass having the mass of the sphere and 

located at the sphere center. In other words, the gravity effect of a sphere at an 

external point (located outside the sphere) is the same as though the whole mass 

of the sphere is concentrated at the sphere center.  

Now, if the observation point (P) is located inside the sphere (r<R), the 

gravity effect at P of a homogeneous sphere of density (ρ) will be given by: 

 
[Δg]sphere = G (4π / 3) r3 ρ / r2 

 
[Δg]sphere = G (4π / 3) ρr 

 

In this case (observation point is inside the sphere) the gravity effect, which 

is the vector acceleration (Δg) in the direction of the sphere center, is 

proportional to distance (r) and not to (1/r2). The part of the sphere between 

radius (r) and radius (R) can be considered to be made up of infinite numbers of 

shells which have zero gravity effect at point (P) as shown above. This means 

that Δg is of zero value at the center of a homogeneous solid sphere. 
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Gravity Anomaly of a Buried Sphere 

In gravity surveying, the measuring instruments are designed to measure 

only the vertical component of gravity effects of anomalous bodies that are 

buried at certain depths below ground surface. Customarily, surveying is 

conducted by measuring of the gravity effect over linear traverses. In other 

words, the gravity variation is established as a function of horizontal distance on 

the ground surface. 

The gravity anomaly (vertical component of gravity, Δg) of a buried sphere 

of mass (m), radius (R), and depth of its center-point (z) can be expressed as 

function of distance (x) as follows (Fig. 8-5):  

 
Δg  = (G m / r2) . cosθ 

 
Δg = 4πGρR3z / 3 (x2 + z2)3/2 

and, 

Δg = Δgmax ( 1 + x2 / z2 )-3/2 
where,   

Δgmax = Δg,    at x = 0 
That is, 
 
     Δgmax =  4πGρR3/3z2  = 0.02794 R3ρ/z2   (R and z in meters) 

Fig- 8-4 Principles of computing gravity effect of a solid sphere at a point (P) outside 

or inside the sphere 
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As an example for application, a sphere with the radius of 500 m and density 

contrast of 0.4 gm/cc having its center at 2km-depth will have a maximum value 

of gravity directly above its center, [Δg]max = 0.349 mgals.  

It is apparent from these formulae that [Δg]max will reduce by a factor of 1/4 

when the depth of the sphere is doubled, and increase by a factor of 8 when the 

radius is doubled. Another significant note is that the anomaly curve (Δg) is 

symmetrical about the origin, and that the maximum amplitude of the anomaly 

(Δgmax) varies inversely with the square of depth of the center. It is also 

important to note that it is not possible to determine (ρ) and (R) separately from 

a given gravity profile, since all concentric spheres having the same products 

(R3ρ) would produce the same gravity profile. 

The Half-Width Concept 

It is useful to note here that these formulae can be used to determine the 

depth of the sphere center (z) as well as its mass contrast (m). This can be 

achieved by measuring the x-distance (call it x1/2) for the point on the anomaly 

     Fig. 8-5 The gravity anomaly due to a solid sphere.  
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where the anomaly value (call it Δg1/2) is half the maximum value Δgmax (Fig 8-

5). By equating the ratio (Δg1/2 /Δgmax) to (1/2), the depth of the sphere center (z) 

is calculated as follows: 

 
Δg1/2 / Δgmax = 1/2 

 
And from substituting Δg1/2 = Gmz / ( x2

1/2 + z2)3/2 and Δgmax = Gm / z2,  
 
we get: 

1 + (x1/2 /z)2 = 41/3 

 
Hence, 

z = x1/2 / (41/3 - 1)1/2 

 
z = 1.3 x1/2 

 

 

This formula (called half-width formula) is used by interpreters in depth 

determination of buried anomalous masses approximating to spherical shapes. 

Also, it can be applied in computing the contrast mass (m) from substituting z = 

1.3 x1/2 in the formula Δgmax = G m/z2
. 

 
 

8.4. Cylindrical Shapes 

8.4.1 Horizontal Line Mass 

Referring to Fig. 8-6, consider a horizontal line mass (y1 – y2) buried at 

depth of (z) and at a distance (r) from an observation point (P). The xyz-

coordinate system is chosen such that its origin is at the observation point (P) 

and the y-axis is parallel to the line mass. 

Using the formula for the point mass, the vertical component of gravity (Δg) 

of an elementary segment (Δy) of mass (Δm) located at distance (s) from the 

observation point (P) is given by: 

 
Δg = (G.Δm.cosθ) / s2 

 
Δg = G.µΔy.z (y2 + r2)-3/2 

where µ is mass per unit length of the line-mass and (r2 = x2 + z2) 
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By integration with respect to (y) from (y1) to (y2) and putting Y1 = (r/y1)2, 

Y2 = (r/y2)2: 

Δg = (Gµz / r2) [(Y2 + 1)-1/2 - (Y1 + 1)-1/2] 
 

For infinite length of the line-mass, (y1) and (y2) are extended to -∞ and +∞ 

respectively, we obtain: 

Δg = 2Gµz / r2  

or, 

Δg = 2Gµ z / (x2 + z2) 

 

8.4.2 Horizontal Cylinder 

Like the case of the sphere, a thin homogeneous cylinder can be 

approximated by a uniform line mass having the mass of the cylinder 

concentrated in its axial line. Applying this concept to an infinite horizontal 

cylindrical rod (Fig. 8-7) of the radius (d) and density (ρ), lying at depth (z). The 

gravity anomaly (Δg) can be expressed as a profile along a line that extends in 

the direction of the x-axis which is taken as perpendicular to that of the 

cylinder’s axis. Substituting πd2ρ for µ: in the line mass formula gives: 

Fig. 8-6 Principle of computing gravity for a horizontal line-mass 
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Δg = 2πGρd2z / r2  

or: 

Δg = 2πGρd2z / (x2 + z2) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As in the case of sphere, the maximum value of the anomaly (Δgmax) is 

found at the point vertically above the rod's center. That is: 

 
    Δgmax =  2πGρd2 / z 

 
and, 

      Δg = Δgmax (1 + x2 / z2 ) 
  

It is noted that the anomaly formula for the rod is the same as that due to the 

line mass except for the change of µ to π d2ρ. 

Comparing this anomaly with that of the sphere, it is noted that the anomaly 

due to a buried rod having same density, same radius and buried at the same 

depth of a sphere, is less sharp than that created by the sphere (Fig. 8-8).  

 

∞ 
Δg 

∞ 

0 x 

Fig. 8-7 Horizontal cylinder is approximated by a thin long cylindrical rod. 
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This is because the variable (x) appears with lower power in the 

denominator of the rod's formula.  

   It is useful to note that the amplitude of the gravity anomaly due to the 

infinite rod Δgmax decreases as the first power of depth (z), and that its value is 

larger than that due to the sphere of same specifications and buried at the same 

depth. This is logical since the infinitely long rod contains much more mass than 

that of a sphere of the same radius and same density. The ratio of the gravity 

amplitude due to the rod to that due to sphere is given by: 
 

[Δgmax ]rod= 2πGρd2 / z 
 

[Δgmax ]sphere= 4πGρd3 / 3 z2 
 

[Δgmax ]rod / [Δgmax ]sphere = 1.5z/d 
 

This comparison has shown that the ration has a minimum value of (1.5) 

which increases with depth of burial (z) for a given radius. 

∞ 

Δg/Δgmax 

∞ 

0 x 

Fig. 8-8 Anomaly due to an infinite cylindrical rod is less sharp than that of a 

sphere of same radius and buried at the same depth. 

 

z0 

                                                               
              rod 
 

                       
sphere 

 

 1 

                                      Sphere 

 

             rod 
 



84 

8.4.3 Vertical Line Mass 

Referring to Fig. 8-9, consider a vertical line mass with its ends buried at 

depths (z1) and (z2) and located at a distance (x) from an observation point (P). 

The xyz-coordinate system is chosen such that its origin is at the observation 

point (P) and the z-axis is parallel to the line mass. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Using the formula for the point mass, the vertical component of gravity (Δg) 

of an elementary segment (Δz) of mass (Δm) from the vertical line mass is given 

by: 

  
Δg = (G Δm cosθ) / r2 

 
Δg = GµΔz.z / (x2 + z2)3/2 

 

where (µ) is mass per unit length of the line-mass and r2 = x2 + z2. 

 

By integration with respect to (z) from (z1) to (z2): 

 

Δg = Gµ [(x2 + z1
2)-1/2 – (x2 + z2

2)-1/2] 
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Fig. 8-9 Principle of computing gravity for a vertical line-mass 
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For an outcropping line-mass (z1 = 0) and of finite length (z2 = L): 

 

Δg = Gµ [x-1 – (x2 + L2)-1/2] 

When in this case the line-mass is of infinite length (L = ∞): 

 

Δg = Gµ/x 

 

8.4.4 Vertical Cylinder 

The anomaly of a vertical cylinder at a point away from its axis cannot be 

represented in a simple formula. However, the gravity effect at a point on the 

axis of the vertical cylinder, which is the gravity maximum value, can be 

computed. The approach followed in derivation is based on integrating gravity 

effects of a series of elementary discs. 

Consider an elementary cylindrical ring of radius (r), width (Δr), thickness 

(Δz), and mass (Δm) as shown in Fig 8-10.  

The vertical component of gravity (Δg) at a point (P) on the axis of the 

elementary ring is given by: 

 
[Δg]ring = G Δm cosθ / s2 

 
[Δg]ring = G Δm cosθ / (r2 + z2) 

 
[Δg]ring = G (2πr.Δr.Δz.ρ) z / (r2 + z2)3/2 

This is the basic formula from which we may derive the gravity effects (at 

axial points) of cylindrical discs and cylinders of finite dimensions. From this 

formula, the following special cases can be reached at: 

 

(i) Hollow Disc 

By integrating of the formula for the elementary ring with respect to r from 

R1 to R2, will give the gravity effect (Δg) of a hollow disc defined by the radii R1 

and R2 : 

 
 Δg = 2πGρ.z.Δz [(R1

2+ z2)-1/2 - (R2
2+ z2)-1/2] 
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(ii) Full Disc 

For full disc of thickness (Δz), put R1=0 and R2=R in this formula to obtain:  

 
Δg = 2πGρ.Δz [1- z / (R2 + z2)1/2] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(iii) Horizontal Slab 

For infinite radius (R = ∞), we get: 

 
Δg = 2πGρ.Δz 

This formula expresses the gravity effect of an infinite horizontal slab of 

thickness (Δz), It is apparent that (Δg) is independent of the slab depth (z), but 

dependant only on its thickness (Δz) and density contrast (ρ).  

This formula is used in Bouguer correction as we have seen in chapter 7. 
 

(iv) Hollow Cylinder 

By integrating Δg for the hollow disc with respect to z from z1 to z2 we get 

the formula for the vertical component of the gravity effect at a point on the axial 

line of a hollow cylinder (Fig 8-11). 

Fig. 8-10 Computation of gravity at a point (P) on the axis of an elementary cylindrical ring 

and on a hollow disc of finite dimensions. 
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Δg = 2πGρ[(z2
2 + R1

2)1/2 - (z2
2 + R2

2)1/2 - (z1
2 + R1

2)1/2  + (z1
2 + R2

2)1/2] 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(v) Outcropping Hollow Cylinder 

Put z1 = 0 and  z2 = H,  

 
Δg = 2πGρ [R2 – R1 + (R1

2 + H2)1/2  - (R2
2 + H2)1/2] 

The formula for a cylindrical sector defined by the radii R1 and R2 (Fig. 8-

12) having a central angle (θ) in radians is obtained by multiplying the Δg 

formula for the outcropping hollow cylinder by the factor θ/2π: 

 
Δg = Gρθ [R2 – R1 + (R1

2 + H2)1/2 - (R2
2 + H2)1/2] 

Which is the formula used for computing the terrain correction. 

(vi) Full Cylinder 

The formula for a full cylinder (Fig 9-10) of the radius (R), height (H) and 

buried at depth (Z) is obtained by putting R1=0, R2=R, z1 = Z, and z2 = Z+H in 

the Δg formula for the hollow cylinder. Thus the gravity effect of a full cylinder 

of radius (R), height (H), and buried at depth (Z) is:   

z1 

z2 

H 

Fig. 8-11 Computation of gravity at a point (P) on the axis of a vertical 

hollow and full cylinders. 
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Δg = 2πGρ[ H + (R2 + Z2)1/2 - { R2 + (H + Z)2}1/2 ] 

 

and for an outcropping solid cylinder (Z=0), we get: 

 
Δg = 2πGρ[ H + R – (H2 + R2)1/2 ] 

 
 

Gravity Profile of a Vertical Cylinder 

So far all formulae for gravity effect of a vertical cylinder express the 

gravity value at the point which is located directly above the cylinder center i.e. 

at the cylinder vertical axis. For the gravity variation of a buried cylinder at 

points shifted by x distance from cylinder axis, there is no simple formula to 

express it. However, an approximate formula for the gravity contribution can be 

derived assuming the cylinder mass (Fig. 8-13) to be compressed to its axial line 

as shown in paragraph (9.4.3) above. 

Based on the approximation made by representing a slim cylinder by a line 

mass concentrated at its center, the following formula for the gravity effect (Δg) 

is derived: 

Δg = πGR2ρ [(x2 + z1
2)-1/2 – (x2 + z2

2)-1/2] 

 

Fig. 8-12 cylindrical sector having inner radius R1, outer radius R2, height H, 

and angle θ. 
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For outcropping thin rod (z1 = 0), this formula reduces to: 

 

Δg = πGR2ρ [x-1 – (x2 + H2)-1/2] 

It should be noted here that the approximation accuracy is improved the 

smaller the radius of the cylindrical rod. 

Another way to compute the gravitational attraction of a buried vertical 

cylinder at a point off its axis is suggested by another approximate formula 

(Dobrin 1960, P. 176). For derivation, first, we compute the gravity effect of a 

cylindrical shell [Δg]SH at a point on its axis which is equal to the difference of 

the coaxial cylinders, Δgo for the outer cylinder and Δgi for the inner cylinder. 

That is: 
[Δg]SH = Δgo - Δgi 

Referring to Fig 8-14, the gravity attraction of the small cylinder (radius d) 

at a point (P), which is at distance (x) from its center, is obtained as follows: 

P 

Z1 

R 

Z2 

x 

Δg 

 

Fig. 8-13 Gravity profile of a buried vertical cylinder, approximated 

by a cylindrical thin rod (mass line). 
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The ratio of the gravity effect [Δg]SM , due to the small cylinder to that of the 

shell [Δg]SH is equal to their respective cross-sectional areas. That is: 

                                    
[Δg]SM = [Δg]SH . d2 / [(x+d)2 - (x-d)2] 

 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 

 
 

 
 

8.5. Sheets and Slabs 

In computing gravity expressions for sheets and slabs we are considering 

that the anomalous bodies are two-dimensional. This implies that the third 

dimension (taken to be along the y-axis) extends from minus infinity to plus 

infinity. Computation results obtained for such infinitely long models can be 

applied to long bodies of finite lengths. This approximation is justified because 

distant parts of the model incur insignificant contribution to the gravity value at 

the observation point.  

 

8.5.1 Horizontal Sheet 

As it is shown in paragraph 8.4.1, the vertical component of gravity (Δg) at a 

point (P) of a horizontal line-mass of an infinite length and located at depth (z) is 

given by: 

Δg = 2Gµz / (x2 + z2) 

Fig. 8-14 Principle of computing gravity profile of a buried vertical 

cylinder using coaxial cylinders approach (after Dobrin, 1960) 
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Let this line mass be in the form of an elementary strip of width (Δx) which 

is infinite in the y-direction (extending from -∞ to +∞) as shown in (Fig 8. 15). 

With this form, the Δg formula, putting µ=σΔx, can be re- written as:  

 

Δg= 2GσΔx.z / (x2 + z2) 

where (σ) is the mass per unit area of the elementary strip. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

By integrating over the finite width (x1-x2), the gravity effect (vertical 

component at the observation point P) of the horizontal sheet extending from x1 

to x2 which is subtending the angle θ (= θ2 - θ1) reduces to the following form: 

 

Δg= 2Gσ (tan-1 x2/z - tan-1 x1/z) 

or, 

Δg = 2Gσ (θ2 - θ1) = 2Gσθ 

For such a sheet which is extending from x = x1 to x = ∞, the formula will 

be: 

Δg= 2Gσ (π / 2 - tan-1 x1 / z) 

or, 

Δg= 2Gσ tan-1 z / x1 

By substituting π for θ in Δg = 2Gσθ we get the gravity value for an infinite 

sheet which is extending from x = -∞ to x = +∞, that is (Δg = 2πGσ). 

X
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Fig. 8-15 Principle of computing gravity for a horizontal sheet from an elementary 

strip of infinite length in the y-direction and of width (Δx) 
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8.5.2 Horizontal Thin Slabs 

Sheet models can be used to approximate thin horizontal slabs with an error 

of less than 2% when its depth is greater than twice its thickness (Telford, et al, 

1996, P40). With so thin slabs the formulae derived above can be used to express 

the gravity effect for slabs of thickness (Δz) and density (ρ) which is expressed 

in mass per unit volume. Thus, with the substitution of µ = ρ Δz Δx in the 

elementary line mass, or σ = ρ Δz in the elementary strip, the Δg formula for an 

elementary line mass in a form of a rectangular rod of cross sectional area (Δz 

Δx) can be re- written as: 

Δg= 2G ρ Δz Δx z / (x2 + z2) 

 

 
 
 
 
 
 
 
 
 
 
 

The three models of thin horizontal slabs corresponding to the sheet models 

presented above are (Fig. 8-16): 

 
(a) Δg = 2Gρ Δz (tan-1 x2/z - tan-1 x1/z) for a slab extending from x=x1 to 

x=x2 

 
(b) Δg = 2Gρ Δz (π/2 - tan-1 x1/z)  for a slab extending from  x=x1 to x=∞ 
 
(c) Δg = 2πGρ Δz for a slab extending from x = -∞ to x = +∞ 
 
 

8.5.3 Horizontal Thick Slab  

Let us start with the formula for the elementary rectangular rod which is 

infinite in length and lying horizontally at a given burial depth. Referring to (Fig. 

8-17), the rod which is of cross sectional area (Δz Δx) is lying at depth (z) and 

extending in the y-direction from (-∞) to (+∞). With the origin of coordinates 

x1 x2 
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     Fig. 8-16 Three models of horizontal thin slabs 
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chosen to be at the observation point (P), the gravity effect (vertical component) 

due to this rod can be readily computed. 

The gravity effect due to the elementary rectangular rod (dealt with in 

paragraph 8.5.2) is given by: 

 

Δg= 2G ρ Δx Δz z / (x2 + z2) 

 

For an infinitesimally thin rod, where Δx and Δz are allowed to approach 

zero, the formula can be re-written as: 

 

Δg= 2Gρz(x2 + z2)-1 dx dz 

 

Now, the gravity effect (Δg) due to a horizontal slab of finite thickness can 

be computed by mathematical integration of this expression over the variables x 

and z. 

One of the models which is of useful application in interpretation work is the 

semi-infinite horizontal slab of a finite thickness. The gravity effect of this 

model is obtained by integrating the formula Δg= 2Gρz(x2 + z2)-1 dx dz over x 

from x=x1 to (x=∞) and over z from z=z1 to z=z2. By carrying out this definite 

integral we get the Δg formula for the horizontal slab of thickness (z2 - z1), 

shown in (Fig 8-18), with its vertical face at distance (x1) from the observation 

point (P) we get: 

 
 Δg = 2Gρ [π(z2 - z1)/2 + z2Φ2 - z1Φ1 + x1 ln(r2/r1)] 

By varying the distance (x1), that is using the variable x the gravity effect 

(Δg) can be expressed as function of x : 

 
Δg = 2Gρ [π(z2 - z1)/2 + z2Φ2 - z1Φ1 + xln(r2/r1)] 

 
Where  
                  r1 = (x2 + z1

2)1/2 , r2 = (x2 + z2
2)1/2 , Φ1 = tan-1(x/z1) and  

                  Φ2 = tan-1(x/z2) 
 
The gravity profile of the semi-infinite slab, drawn in Fig. 8-18, shows that the value 

of Δg is increasing with x. In fact it attains its maximum value Δg = 2πGρ (z2 - z1) at 

(x= +∞) and tends to zero as x approaches - ∞. At x=0, Δg = πGρ (z2 - z1). When the 

slab is infinite in all directions, the gravity effect becomes constant at the value of 

Δg = 2πGρ (z2-z1) and independent of x. This is recognized to be the formula used 

in Bouguer correction. 
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Fig. 8-17 Principle of computing gravity for a horizontal slab from an 

elementary rectangular rod of infinite length in the y-direction and of cross 

sectional area Δx Δz 
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Fig. 8-18 A semi-infinite horizontal slab of thickness (z2 – z1) having its vertical 

face at x1-distance from the observation point, P. 
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Another type of bodies which are of practical applications is the semi-

infinite slab with sloping edge-face. This type of bodies is particularly useful in 

computing gravity anomalies of two-dimensional bodies having polygonal cross 

sections. The formula is rather complicated and can be found in some other 

publications (see for example Telford, et al, 1996, p.46) 

 

8.6. Rectangular Parallelepiped 

The gravity effect of a body in the shape of a rectangular parallelepiped can 

be computed by summing up the gravity contributions of all of the mass 

elements making up the bulk of the body.  

Consider an elementary volume mass (ρΔx Δy Δz) taken within a buried 

body having the shape of a parallelepiped (Fig 8-19). By making the origin of 

the rectangular coordinate system to be coincident with the observation point (P) 

the vertical component of the gravity at this point due to the elementary volume 

mass located at distant (r) from (P) is given by: 

 
Δg = G (ρΔx Δy Δz) cosΦ / r2 

or, 

Δg = G (ρΔx Δy Δz) z / (x2 + y2 + z2)3/2 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

x 

y 

z 

r 

Elementary volume 

mass, ρΔx Δy Δz 

Fig 8-19 A rectangular parallelepiped with the elementary volume mass 

P 

Φ 
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The gravity effect (Δg) for the parallelepiped at the point (P) is then 

obtained by successive definite integration over the dimensions of the 

parallelepiped, thus: 

 

Δg =Gρ   2/3222 )( zyx

zdxdydz
 

   For an irregular three dimensional mass, the computation may be carried out 

based on numerical integration using the following summation formula: 

 
Δg =  G ρ Σ Σ Σ  (∆x.∆y.∆z) z / (x2 + y2 + z2)3/2 

 

 

8.7. Bodies of Irregular Shapes 

The models considered so far (spheres, cylinders, sheets, slabs and 

parallelepipeds) can serve for computing gravity effects of certain geological 

bodies which can be approximated by such simple geometrical shapes. In 

addition to that, the derived formulae of such models can serve in computing 

effects for models of irregular shapes. This can be done through combination of 

several regularly shaped models. If, for example a geological body can be 

approximated by a gather of few spherical bodies, then the effect of this model is 

calculated by summing the effects of the chosen spheres computed separately. 

Another common example is a model consisting of a set of coaxial cylinders of 

different radii (Fig. 8-20). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8-20 An irregular body can be approximated by a combination of 

models of regular shapes such as spherical and cylindrical models 
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There are two types of irregularly shaped models for which gravity effects 

can be computed. These are: two-dimensional (2D) and three-dimensional (3D) 

models. 

 

8.7.1 Two-Dimensional Models 

         A two-dimensional (2D) body is defined to be an infinitely long body 

with a cross sectional area which is of a constant geometrical form throughout its 

entire length. The cross section may be of a regular simple geometrical form or 

of an arbitrary, non-regular form. As it was presented above (sections 8.4.2 and 

8.5.2), the gravity profile, for models in the form of thin cylindrical or 

rectangular rods is computed along a line which is perpendicular to the strike 

direction of the body. 

One of the 2D models, which is of a practical use in interpretation, is a 

buried infinite horizontal body of polygonal cross section (Fig. 8-21). 

Computation of gravity effect of such a 2D-model is based on considering 

the body to be formed of horizontal thin rods which are infinitely-long. The net 

gravity effect is obtained by integrating the effects of the individual elementary 

rods. The derived expression can be included in a computer program to solve for 

specific cases. The input needed to run the program is the xyz-coordinates of the 

polygon vertices and its density contrast. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Elementary horizontal 
rod of infinite length 

 

2D body  of irregular cross section 
formed of infinite horizontal 
elementary rods 

 Fig. 8-21 Gravity anomaly of a buried horizontal 2D-body (of infinite length) of 

polygonal cross-section, which is formed from a pack of elementary horizontal 

rods of infinite lengths 
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It is quoted in the geophysical literature (Telford, et al, 1996, p.39) that 

computed gravity effect based on infinitely long models is considered 

representative (with tolerable error) when the length of the body in the strike 

direction is about 20 times its geometrical dimensions including its width and 

depth. 

 

Use of Templates 

A technique was developed (Hubbert, 1948) for graphical computation of 

gravity effect of a 2D-body having an irregular cross section. This is 

accomplished by using a specially designed template which is made up of two 

systems of straight lines. The first system is made up of lines radiating from the 

origin point and forming equal angles (ΔΦ) with each other. The other system 

consists of equally-spaced horizontal lines with spacing of (Δz). In this way, the 

resulting template will be consisting of trapezoidal cells, each of which will have 

the same gravity effect at the origin point of the template (Fig. 8-22). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The theoretical basis for the construction of this template is explained as 

follows: 

Fig. 8-22 Template for Computing gravity anomaly of a 2D-body of arbitrary 

cross-section.  
 

  ∆θ 
∆z 

Cross section  
of 

a 2D body 
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For sake of computation, a 2D body having an arbitrary cross sectional area 

is considered as being formed of elementary rectangular rods closely packed 

together. Thus, the gravity profile of such a body can be obtained from summing 

up the contributions of the constituent elementary rods. As it is explained in 

section 8.4.2, the vertical component of gravity Δg due to a thin rectangular rod 

of infinite length, which is extending in the y-direction, is expressed by: 

  
Δg =  2G ρ ∆x ∆z z / (x2 + z2) 

where the product ∆x.∆z represents the cross sectional area of the 

elementary rod. 

The gravity effect of a 2D body which is considered to be composed of a 

pack of these rods is obtained from summing up the individual effects of the 

elementary rods. That is: 

Δg =  2G ρ Σ Σ  (∆x∆z) z / (x2 + z2)  
 

Δg =  2G ρ Σ Σ ∆z tan-1 (x/ z) 
 

Δg =  2G ρ Σ Σ ∆z ∆θ 

where ∆θ represents the angle subtending the rod-width (∆x) in the x-

direction.  

In application, the template-origin is placed at the surface point where the 

gravity is to be calculated, then from the number (N) of the trapezoidal cells 

included in the cross-sectional area of the 2D-body the gravity value (Δg), in 

milligals, is found from the following formula (Telford, et al, 1996, p.45): 

 
Δg = 7.1 ρ N Δθ Δz .10-5 mgal 

 

where Δz in meters. 

 

8.7.2 Three-Dimensional Models 

For the sake of computing gravity effect, an anomalous three dimensional 

(3D) model can be assumed to be made up of a pile of horizontal polygonal 

plates. Derivation of the gravity expression for the 3D body is based on 

integrating the effects of the individual plates forming the model and the 

computation is normally done by a computer program. The input in this case is 

the xyz-coordinates of the vertices of each plate comprising the model together 

with the density contrast. 
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The gravity effect of a three dimensional body having an arbitrary shape 

may be calculated by dividing the body into a series of horizontal slices (plates) 

and approximating each slice by a polygon (Fig 8-23). The gravity anomaly due 

to a polygonal plate at a given observation point can be expressed by certain 

mathematical relations. Such expressions are normally complicated, but can be 

solved by computer programs to compute the gravity effect of a buried 

horizontal plate of polygonal face and of a constant thickness. The input to the 

program is the geometrical parameters of each plate which include the xyz-

coordinates of the plate vertices, its thickness, and density contrast. The gravity 

effect of the whole body is then found by summing up the contributions of the 

individual polygonal-plates. 

In practice, the procedure consists of a series of steps. First, the model is 

divided into horizontal slices by means of contours at a defined contour interval. 

Then each contour closure is replaced by the best fitting polygon. Lastly, the 

coordinates of each polygon-corner and other model parameters are input to the 

computer which is programmed to calculate the gravity anomaly of the defined 

model. The mathematical expressions for models of irregularly shaped 2D and 

3D bodies can be found in (Robinson, 1988, p 297-299). 
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Fig. 8-23  A polygonal plate of constant thickness (Δz) is defined by the 

xyz-coordinates of its vertices (v1 , v2 , v3 , …) and a three dimensional 

model is approximated by a series of horizontal polygonal plates. 
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Chapter 9 

INTERPRETATION OF GRAVITY ANOMALIES 
 

 
          
 

9.1. Scope and Objective 

 The basic principle underlying gravity data interpretation is the fact that any 

subsurface change in density (i.e. density contrast) would have a corresponding 

signature or imprint on the Earth gravity field. In fact, it is an inverse problem 

where the interpreter aims at translating (interpreting) gravity data, normally 

expressed by Bouguer gravity maps or gravity profiles, into the corresponding 

geological structures (Fig. 9-1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The interpreter should bear in mind that a measured gravity value is in fact 

the resultant (vector sum) of the attraction forces from all subsurface and over 

surface gravity effects. The Bouguer gravity image, resulting from processing of 

the raw data, represents gravity variation caused only by the sub sea level 

geological anomalies. The value of the Bouguer anomaly, which may be positive 

or negative, is function of a number of factors. These are mainly the size, shape, 

and depth as well as the value of the density contrast of the anomalous body in 

respect to the surrounding medium. 

Fig. 9-1 The objective of the gravity interpretation process is the translation of the Bouguer 

gravity anomaly into the corresponding geological section. 
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To facilitate the interpretation process, the interpreter normally uses further 

data analyses applied on the Bouguer anomalies in order to obtain more direct 

evidence on the causing geological anomalies. Separation of the regional trend, 

computing gradients, and modeling (using trial density and trial shapes and 

depths) are all ways and means to determine the geological structure causing the 

gravity anomaly. 

    

9.2. Role of Rock Density 

As we have seen in previous chapters, the gravitational attraction force of a 

certain body is function of the total mass of that body. For a defined body shape, 

the created gravity force (or acceleration) is directly proportional to the mass 

distribution (i.e. density) within the body. Thus, density plays a principal role in 

all the phases of the gravity surveying activities. Bouguer and terrain corrections 

for instance depend on density of the rocks of the survey area.  

Most important of all is that a gravity anomaly is caused by a density 

contrast between the body and its surrounding material. The algebraic sign of the 

gravity anomaly may be negative or positive depending on whether the 

anomalous body has a density-deficiency or density-surplus in respect to the host 

medium (Fig. 9-2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

ρ1               ρ2 

 

0 

 

Positive gravity anomaly 

 

0 

 

Negative gravity anomaly 

 

Geological anomaly 

Sea level 

Fig. 9-2 The sign of the gravity anomaly depends on density contrast (ρ2 - ρ1) 

of the anomalous mass (geological anomaly), where (ρ2 > ρ1). The positive 

sign for density surplus and the negative sign for density deficiency 

ρ1               ρ2 

 



103    Chapter 9 : Interpretation of gravity anomalies 
 

The interpreter must always remember that it is not the absolute value of 

density that produces a gravity anomaly. What matters in this regard is the 

contrast in density between the anomalous mass and its surrounding material. 

The greater the contrast is the more pronounced the caused anomaly will be. 

Naturally, geological conditions control density distribution in the 

subsurface geological formations. Rock bulk-density depends on a number of 

factors, most important of which are lithology, porosity, mineral composition, 

and fluid content. It is commonly observed that the density of a sedimentary rock 

increases with geological age and with depth of burial, due to increase of 

compaction. As for igneous rocks, density increases with the increase from 

acidic (e.g. granite) to basic and ultra basic rocks (as in gabbro and syanite). 

 

9.2.1 Densitiy Variations 

Like any other physical properties of rock media, density varies according to 

rock type and the prevailing geological conditions under which the rock 

specimen is existing. As regards rock type, the igneous rocks are generally of 

higher densities than sedimentary rocks. Based on laboratory measurements of 

samples from on-surface outcropping rocks and from subsurface rocks (core 

samples), bulk densities for various types of rocks are made available. The mean 

density values for the commonly known rock types are given in the following 

table (Dobrin, 1960, p.251). 

 
 

 
 
 
 
 
 
 
 

It is apparent that the density values cover a wide range of values and that 

there is overlap between densities of various rock types. This property which is 

common in rocks forms the main source of uncertainty in rock identification.   

An important factor affecting density of a rock formation is the depth of 

burial of the formation. Since compaction increase with the increase of depth, it 

is expected that rock density increase with depth. Nettleton (1934) published the 

result of a study based on combination of gravity data and theoretical analysis. 

Rock Type                Average Density 
----------------------------------------------------------- 

Sandstone                                 2.32 
Shale                                          2.42 
Limestone                                 2.54 
Acidic Igneous                         2.61 
Dolomite    2.70 
Metamorphic                             2.74 

Basic Igneous                          2.79 
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The result expressed in the form of a curve expresses the type of relationship 

between density and depth of formations from the Gulf Coast area (Fig. 9-3).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

9.2.2 Ranges of Rock Densities 

As it is stressed, the gravity anomaly results from density differences 

existing between the various subsurface rock formations. In fact, the success of 

the interpretation process depends largely upon the accuracy of the available 

knowledge of the subsurface density variations. It is therefore very useful for the 

interpreter to have at hand some statistics about the bulk density of rocks and 

minerals in nature. Ranges of density values for common rock types and 

minerals are given in the following tables (Telford et al, 1996, p.16). 

 

(A) Wet Sedimentary rocks  

Rock type 
Density range  

(gm/cc) 
Average 
(gm/cc) 

Soil                             1.20 - 2.40 1.92 

Clay 1.63 - 2.60 2.21 

Gravel                                                             1.70 - 2.40 2.00 

Sandstone  1.61 - 2.76 2.35 

Shale    1.77 - 3.20 2.40 

Limestone 1.93 - 2.90 2.55 

Dolomite   2.28 - 2.90 2.70 

 

Fig. 9-3 Density of Gulf Coast sediments as a function of depth (Nettleton, 

1934, roughly re-drawn) 
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 (B) Igneous rocks 

Rock type 
Density range  

(gm/cc) 
Average 
(gm/cc) 

Rhyolite     2.35 - 2.70 2.52 

Andesite    2.40 - 2.80 2.61 

Granite       2.50 - 2.81 2.64 

Granodiorite   2.67 - 2.79 2.73 

Porphyry   2.60 - 2.89 2.74 

Quartz diorite 2.62 - 2.96 2.79 

Diorite    2.72 - 2.99 2.85 

Lavas     2.80 - 3.00 2.90 

Diabase    2.50 - 3.20 2.91 

Basalt    2.70 - 3.30 2.99 

Gabbro  2.70 - 3.50 3.03 

Peridotite  2.78 - 3.37 3.15 

Acid igneous  2.30 - 3.11 2.61 

Basic igneous  2.09 - 3.17 2.79 
 

(C) Metamorphic rocks 

Rock type 
Density range  

(gm/cc) 
Average  
(gm/cc) 

Quartzite  2.50 - 2.70 2.60 

Schists    2.39 - 2.90 2.64 

Greywacke    2.60 - 2.70 2.65 

Marble  2.60 - 2.90 2.75 

Serpentine  2.40 - 3.10 2.78 

Slate  2.70 - 2.90 2.79 

Gneiss   2.59 - 3.00 2.80 

Amphibolite   2.90 - 3.04 2.96 

Eclogite  3.20 - 3.54 3.37 
 

(D) Metallic minerals 

Oxides, carbonates 

Rock type 
Density range  

(gm/cc) 
Average  
(gm/cc) 

Bauxite  2.30 - 2.55 2.45 

Limonite  3.50 - 4.00 3.78 

Siderite  3.70 - 3.90 3.83 

Manganite  4.20 - 4.40 4.32 

Chromite  4.30 - 4.60 4.36 

Ilmenite  4.30 - 5.00 4.67 

Magnetite  4.90 - 5.20 5.12 

Hematite   4.90 - 5.30 5.18 

Cuprite  5.70 - 6.15 5.92 
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Sulfides, arsenides  

Rock type 
Density range  

(gm/cc) 
Average  
(gm/cc) 

Malachite 3.90 - 4.03 4.00 

Chalcopyrite 4.10 - 4.30 4.20 

Pyrrhotite 4.50 - 4.80 4.65 

Molybdenite 4.40 - 4.80 4.70 

Pyrite 4.90 - 5.20 5.00 

Chalcocite 5.50 - 5.80 5.65 

Cobaltite 5.80 - 6.30 6.10 

Arsenopyrite 5.90 - 6.20 6.10 

Galena 7.40 - 7.60 7.50 

         

(E) Non-Metallic minerals 

Rock type 
Density range  

(gm/cc) 
Average 
(gm/cc) 

Petroleum 0.60 - 0.90 - 

Ice 0.88 - 0.92 - 

Sea water 1.01 - 1.05 - 

Lignite 1.10 - 1.25 1.19 

Soft coal 1.20 - 1.50 1.32 

Anthracite 1.34 - 1.80 1.50 

Chalk 1.53 - 2.60 2.01 

Graphite 1.90 - 2.30 2.15 

Rock salt 2.10 - 2.60 2.22 

Gypsum 2.20 - 2.60 2.35 

Kaolinite 2.20 - 2.63 2.53 

Orthoclase 2.50 - 2.60 - 

Quartz 2.50 - 2.70 2.65 

Calcite 2.60 - 2.70 - 

Anhydrite 2.29 - 3.00 2.93 

Biotite 2.70 - 3.20 2.92 

Magnisite 2.90 - 3.12 3.03 

Fluorite 3.01 - 3.25 3.14 

Barite 4.30 - 4.70 4.47 

 

As it is seen from these tables, the density values of the rock types are 

falling within the small range of 2-3 gm/cc. It is also apparent that densities of 

igneous rocks are generally tending to be higher than those of the sedimentary 

rocks and densities of the metallic minerals are higher than those of the non-

metallic compounds. 
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9.2.3 Density Determination Methods 

It is commonly known that the density of a certain rock type can be quite 

variable. For this reason, an average density value may be obtained from many 

repeated measurements. Another important point is the need for density 

measurement for a rock specimen existing in its natural environment. Direct and 

indirect methods are available for use in density determination. For the gravity 

surveying work it is preferable to determine density of rocks in-situ since the 

obtained values in this case give the more true representation of the gravity 

causing bodies. Several techniques can be applied to determine rock bulk 

density. These are: 

 

 (i) By Direct method  

By this method, a sample is weighed in air and then in water and from the 

difference the bulk density can be computed. If it is porous, then the specimen is 

saturated with water beforehand and the obtained density value, in this case, 

represents near realistic values of rocks existing under the water table.  

(ii) By Underground Measurement 

Two gravity readings are taken; one is taken at the surface of a rock slab and 

the other reading is taken directly below the slab. This is possible if there is a 

mineshaft or a cave opening that allows measuring gravity at the two faces of the 

slab.  

Referring to Fig. 9-4, let AB be an opening of depth (h) and gA and gB be the 

gravity values (in milligals) measured at points (A) and (B) respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

density,  ρ 

Fig. 9-4 Principle of the method of density determination from under-ground 

measurements 
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The difference (gB - gA) is related to the rock slab of thickness (h, in meters) 

and density (ρ, in gm/cc) by: 

 
gA + 0.3086 h – 0.0419 ρ h + TA = gB + 0.0419 ρ h + TB 

 
giving, 

gB - gA = (0.3086 - 0.0838ρ) h + ΔT 
  

hence, 

ρ = 3.68 - 11.93(gB - gA - ΔT) / h  
 

where (ΔT) is the difference in terrain correction (TA-TB) which is needed to 

be taken into consideration if cavities exist in the neighborhood of the shaft 

opening.  

 

(iii) From Borehole Measurements  

Rock density can be measured in boreholes using a gamma-ray logger which 

consists of a source of gamma-rays at one end of the logging tool and a detector 

(usually a Geiger counter) at the other end. The intensity of the back-scattered 

radiation from the rocks penetrated by the well is approximately proportional to 

the electron concentration in the rocks which is proportional to the wall rock 

density. A curve (density-log) is usually drawn showing the density variation 

with depth. It should be noted here that, because of the penetration limitation, 

density information given by this method expresses density variation of a rather 

limited penetrated zone which is of less than half a meter in extent. 

Another way of density determination from borehole measurements is by 

use of borehole gravity meters (BHGM) method. The technique involves 

lowering a special type of gravimeter through a borehole and measuring gravity 

at different depths giving an estimate of the average density of the material 

between any two measurement points inside the borehole. 

The relation between density (ρ) and gravity difference (gB – gA) at two 

points B and A is expressed by the equation (ρ = 3.68-11.93(gB – gA - ΔT)/h) 

which has been derived in the previous paragraph.  

The difference between gravity readings gA and gB at two different points 

(A) and (B), which are (h) distance apart, would give the apparent density of the 

material between the two points. Thus, dropping the Terrain-correction term 

(ΔT) which is not necessary in borehole measurements we get: 

 
ρ = 3.68-11.93 (gA and gB) / h 
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This shows that the density is determined from the vertical gradient of 

gravity measurements made by the borehole gravimeter. 

(iv) Nettleton’s Method  

The well-known geophysicist L. L. Nettleton introduced a method for 

density determination using gravity measurements (Nettleton, 1939).This 

method involves measuring gravity along a line across an isolated prominent 

topographical feature such as a small hill or valley. The raw gravity readings are 

subjected to Bouguer and terrain corrections using a series of different trial 

densities. The resulting gravity profiles are then drawn for each trial density 

value. The real density value, representing that of the surveyed topographic 

feature (a hill for example), is that one which yields a Bouguer profile which is 

of least resemblance to the outlines of that feature (Fig. 9-5). 

If an applied density value (ρ1) is smaller than the actual value (ρ0) of the 

surveyed topographical feature, we get a computed Bouguer gravity value (ΔgB1) 

higher than the optimum Bouguer value (ΔgB0). On the other hand, when the 

applied density is greater than the actual density, the Bouguer values will be 

lower than the optimum value. 

The deviation of the computed Bouguer value from the optimum is 

dependent on elevation. This means that the computed Bouguer profile will be of 

a shape which resembles that of the surveyed topographic feature when the 

applied trial density is smaller than the optimum density. However when the 

applied density is greater than the optimum, the obtained Bouguer profile will 

also resemble the shape of the topographic feature but inverted form. This can be 

seen as follows: 

Let the optimum density for the topographic feature be (ρ0) and the applied 

trial density (ρ1) is less than (ρ0) by (Δρ) then we have for the computed 

Bouguer anomaly: 

ΔgB = gO - gN  + 0.3086h - 0.0419 (ρ0 - Δρ) h 
 

ΔgB1 = ΔgB0 + 0.0419 Δρh 
 

This shows that the deviation (ΔgB1 - ΔgB0) is in direct proportionality with 

the elevation (h) giving in this case, where ΔgB1 > ΔgB0, is the resemblance of the 

Bouguer profile with the outlines of the topographic feature.  

For the case (ρ1 > ρ0) we get ΔgB1 = ΔgB0 - 0.0419) Δρh which means that 

ΔgB1< ΔgB0. Since the deviation (ΔgB1 - ΔgB0) is dependent on the elevation (h) 

we get the inverted form of the Bouguer profile in this case. 
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The advantage of this method is that it gives an average value for the density 

of material existing above the seal level with no need for extra tools and 

measurements requirements as boreholes. The disadvantage is that the prominent 

feature may not be representative sample for the rest of the survey area, or the 

feature may be due to an isolated density-anomaly such as an igneous intrusion 

or anomalous salt body. Ideally measurements should be made over a 

homogeneous erosion feature which is not formed due to near-surface density 

anomaly. 
 

 (v) From P-wave Velocity  

This method is based on the empirical relationship existing between rock 

density and the P-wave interval-velocity obtained from seismic data. Based on a 

number of researches such as Nafe and Drake (1963), and Gardner et al (1974), a 

number of empirical relationships between P-wave velocity and density have 

been established. Plot of the empirical relationship connecting P-wave velocity 

to rock bulk density is shown in Fig. 9-6. 

This method is suitable for density determination for deep strata that are 

inaccessible by directly measuring instruments. The accuracy of the density 

determined by this method is estimated to be in the order of ±0.1 gm/cc (Kearey 

and Brooks, 1987, p.157). 

  ρ1 < ρ0 

 Arbitrary datum 

 

 Elevation  
 

 Bouguer 
anomaly 

 

Fig. 9-5 Schematic representation of the Nettleton’s method for density 

determination  
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9.3. Ambiguity in Gravity Interpretation  

Interpretation of gravity data (and other potential field data such as magnetic 

and electrical anomalies) suffers from the ambiguity phenomenon. A given 

buried anomalous mass gives a unique gravity anomaly. On the other hand, a 

given gravity anomaly can be created by an infinite number of possible density 

distribution models. Thus, for instance, a number of concentric spheres of the 

same mass but of different densities and volumes, or of different masses located 

at different depths, can produce the same anomaly (Fig. 9-7). 

 

9.4. The Direct and Inverse Problems 

There are two alternative approaches followed in geophysical 

interpretations. These are commonly known among geophysicists by the term; 

direct (or forward) problem and the inverse-problem. 

The direct problem approach involves computing the geophysical response 

(the gravity anomaly, in this case), given the parameters (geometrical shape, 

size, depth, and density distribution) of the causing anomalous body. The inverse 

problem approach, on the other hand, involves determination of the body 

parameters from the given gravity anomaly (Fig. 9-8). 

 

Density, gm/cc 

     P-wave  velocity 

Km/sec 

10 

5 
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Fig. 9-6  Plot of the empirical function connecting P-wave velocity 

to bulk density of rocks (Redrawn from Nafe and Drake, 1963). 
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As it is stated above, the ambiguity in gravity interpretation implies that an 

anomalous body which produces a gravity anomaly is not unique. This means 

that the inverse problem approach used in interpretation cannot, by itself, lead to 

a single solution. In other words, with the inverse problem method it is not 

possible to deduce the causing anomalous body with certainty. However, with 

additional data, that is with additional constraints, this method becomes a 

practical and successful tool in interpretation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9-8 Concept of the direct- and inverse-problems. Deduction of model 

from gravity effect and vice versa. 
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Inverse modeling:  determination of geological model, given 
the gravity anomaly 
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geological model  

 

Fig. 9-7 Interpretation ambiguity, one gravity anomaly can be 

produced by concentric spheres of the same mass and different 

densities and different volumes. 
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9.5. Regional and Residual Gravity  

The gravity field expressed by a Bouguer map is the sum of gravity effects 

resulting from density changes (geological anomalies) existing in the subsurface 

medium of the surveyed area. These changes, expressed by the gravity 

anomalies, are produced from lateral changes in density. The amplitude of the 

anomaly is function of both the density difference (density contrast) and the 

depth of the responsible geological structure. In fact, the anomaly amplitude gets 

larger with the increase of density contrast and with the decrease of the depth of 

the anomalous body. For a given anomalous mass, the amplitude of the gravity 

anomaly, its smoothness and width are governed by depth of the mass. As the 

depth increases, the resulting gravity anomaly gets wider, weaker, and smoother. 

This is schematically illustrated in Fig. 9-9. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A Bouguer anomaly-map normally shows gravity variations that consist of 

two components. These are: 

(i) Long wavelength (low wave number) variation, reflecting deep geological 

anomalies which are of large and of regional extent. This component which 

shows the general trend of variation is called the regional gravity. 

(ii) Short wavelength (high wave number) variation reflects relatively shallow 

geological anomalies which are of restricted or local nature. Because, this 

component is normally obtained by removing the trend-component (the 

z1 

  z3 

Bouguer gravity anomalies 

        Anomalous bodies at different depths, z 

Sea level 

Fig. 9-9 Depth effect on the Bouguer gravity-anomaly of a body of density 

(ρb) buried in host rocks of density (ρh) where ρb > ρh. 

ρh 

ρb 

ρb 

ρb 

  z2 



114 

regional) from the Bouguer map, it is normally referred to as the residual 

gravity or just the residuals. 

It should be remarked here that geophysicists sometimes use other terms like 

low frequency and high-frequency components for the slow (long wavelength) 

and fast (short wavelength) variations respectively. 

 

9.6. Anomaly Separation Schemes 

The first step in interpreting Bouguer gravity data is the isolation of the 

residual anomalies by removing the regional anomaly from the original Bouguer 

anomaly map (or profile). Separation of residual anomalies (sometimes called 

residualizing process) can be achieved by one of several types of approach, 

which can be grouped into two main types. These are graphical and analytical 

types of approach. 

 

9.6.1 The Graphical Approach 

A Bouguer gravity variation may be expressed in the form of a profile (one-

dimensional function, f(x)) or in the form of a contour map (two-dimensional 

function, f(x, y)). In the case of a profile, the smoothing process can be carried 

out manually by drawing a linear or curvilinear curve that follows the general 

trend of the anomaly variation. The drawn line is considered to be representing 

the regional gravity which is then subtracted from the observed Bouguer gravity 

values at each observation point. The result of this process is getting the residual 

gravity variation along that profile (Fig. 9-10). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Estimated regional gravity  

Bouguer gravity anomaly 

Residual gravity anomaly 

Fig. 9-10 Determination and separation of the residual anomaly by the graphical 

method (case of a gravity profile).  
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For a Bouguer gravity map, a similar procedure is followed. In this case, the 

gravity contours are smoothed by drawing lines expressing the general trends of 

the contour lines (Fig. 9-11). 

Another way of separation which can be applied in case of a Bouguer 

gravity map is by constructing a set of gravity profiles from the given map. Each 

profile is then smoothed as explained above to determine the regional trend 

which is subtracted from the observed gravity to give the residual anomaly 

variation along the profile. By posting the values from the processed profiles 

onto the map, the final regional and residual maps can then be obtained. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The regional trend curve can be drawn in such a way that all the computed 

residual anomalies are of positive values. In analytical methods, the average 

value of the residual anomalies is usually set at zero. This will result in both 

positive and negative residuals giving a residual gravity map in which each 

anomaly is surrounded by neighboring anomalies of opposite algebraic sign. 

Whether it is a profile or a contour map, the graphical smoothing technique 

is basically dependent on personal judgment. For this reason, the computed 

regional and residual variations may differ from one interpreter to another. The 

extent of difference depends on the degree of complexity of the given Bouguer 

gravity data and on the interpreter individual skill. 

Fig. 9-11 Determination by the graphical method of residual gravity by 

subtracting the regional gravity contours from the Bouguer contours (case of 

a gravity contour map).  

 

Contours of Bouguer  
gravity 
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9.6.2 The Analytical Approach 

Analytical methods for separation involve numerical operations applied on 

the Bouguer gravity map. This process requires the basic data to be known at 

points organized in a uniform grid pattern. For this reason, the Bouguer gravity 

values which are irregularly spaced are re-organized in such a way that the 

gravity values become known on a square grid of points. This process, which is a 

necessary pre-requisite for all analytical methods, is called gridding or digitizing 

of the gravity data.  

Several analytical methods exist for the separation process. These are: data 

averaging, polynomial fitting, upward continuation, second derivatives and 

wavelength filtering. 

 

(i) Data Averaging 

Griffin Method: 

The simplest averaging technique is that suggested by Griffin in 1949. The 

method serves as a direct way to compute residual gravity from a given Bouguer 

gravity map. It involves averaging of the gravity values of a set of points on the 

gravity map which are located at equal distances from the point at which the 

residual is to be computed. The residual gravity value at a point (as point P in 

Fig. 9-12) is equal to the observed Bouguer value (gP) at that point  minus the 

computed average of the gravity values at a set of points which are equally 

spaced about the circumference of a circle of a suitable radius. The process is 

repeated for all observation points in the survey area. 

 

Running-Average Method: 

Other methods based on the same principle (data averaging) may be 

implemented to determine the regional gravity. One common way to achieve this 

is by use of the running-average technique. The process carried out over a given 

Bouguer profile will bring about a smoothing effect to that profile. This process 

involves taking the average of a number of values taken at a set of points (called 

the running set) in the neighborhood of a central point at which the average is to 

be computed.  

To illustrate the technique, let us consider computing the running average 

for a Bouguer gravity profile from which gravity values can be read at a 

sequence of observation points (g1, g2, g3, g4, g5, g6, g7, g8, …). Using a 5-point 
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running set, the value of the central point (g3) of the first running-set (g1, g2, g3, 

g4, g5) is then replaced by the computed average of these five values. In the 

second step, the running set is shifted forward by one point (that is for the points 

g2, g3, g4, g5, g6). The central value (g4) is likewise replaced by the average of the 

new running set. The shifting and averaging process is continued over all the 

points in the profile from start-point right through to the end-point producing a 

smoothed gravity profile. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It should be noted here that if instead of five points, fifteen points are used 

for the running-set, we get more severe smoothing effect. The number of points 

used in the running-set is decided upon after making several tests. Of course, the 

larger the number of points taken in the average, the smoother the profile 

becomes (Fig. 9-13). In all cases, the smoothing effect is incomplete at both ends 

of profile due to decrease of the number of points in the running set at the two 

ends of the profile.  

The running average (called also moving average) would result in a 

smoothed regional anomaly which is then subtracted from the Bouguer gravity to 

obtain the residual (local) gravity anomaly. 

The running average technique can be applied in the same way on a Bouguer 

anomaly map, where the values are known over uniformly spaced grid points. In 

Fig. 9-12 Computing residual gravity by Griffin method. The value gP of residual 

gravity at a point (P) is calculated by subtracting the mean of Bouguer values, (g1 

+ g2+ g3 +… + gN) / N, from the Bouguer value at that point. Then, Residual 

gravity at point (P) is equal to gP - (g1 + g2 + g3 + g4 + g5 + g6 + g7 + g8) / 8. 

 

  P 

g1 

g2 

g3 

gN 

gP 
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this case, the gravity value of each observation point in that map is replaced by 

the average of all points in a square area whose center coincides with that point. 

As in the profile case, the smoothing effect will be incomplete over the margins 

of the survey area. 

 

The Weighted Averages 

In the simple Griffin method, the average is computed for values of points 

which are at equal distances from a central point, and thus in this case a simple 

arithmetic average is adequate. However when the gravity-values entering in the 

adopted running-set belong to points of varying distances from the central point 

of the set, weighted averaging becomes necessary. Since the contribution of a 

point in the applied running-set is inversely proportional to its spacing-distance 

from the central point, its value must be multiplied by an appropriate weighting 

factor before being used in the average computation. The weighted average (gw) 

is calculated by summing the value-by-weight products (gi wi) and dividing by 

the sum of the weights (wi). That is: 

 
gw =  (g1 w1 + g2 w2  + g3 w3  + … + gN wN) / ( w1 + w2 + w3 + … + wN ) 

 

or: 

gw =  (Σ gi.wi) / Σ wi  

Customarily, the weighting factors (wi) of the points in the running set are 

inversely proportional to the point-spacing from the central point. One can 

readily see that the simple average (gs) is a special case of the weighted average 

and can be obtained by making all weight values be equal w1 = w2 = … = wN, 

giving for N-points: 

                                  gs =  ( g1 + g2 + g3 +… + gN ) / N 
 
or: 

gw =  (Σ gi) / N 

The running set may be one-dimensional array (as in case of a profile) or 

two-dimensional array as in case of gravity data given at a uniform grid map. To 

clarify the concept of applying running average method on a given gravity map 

where the gravity values are expressed in the form of a two-dimensional array, 

consider the data set shown in Fig 9-14. The grid spacing in this example is 

assumed to be 3m in the x-direction and 4m in the y-direction. By choosing a 9-

point (3 by 3 - array) for the running set and using the inverse-proportionality 

principle, the weighting factors become 1/3, 1/4, 1/5 for the spacing of 3m, 4m, 

and 5m respectively. 
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Fig. 9-13  Determination of regional gravity profile by running-average method. The 

regional trend-line (black curve) is superimposed on the original Bouguer profile (red curve) 
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The weighted average of the 9-point running-set at the central point (P) is 

given by gP, where: 

 
gP =  (g1.1/5 + g2 .1/4  + g3 .1/5  + g4.1/3 + g5 .1 + g6 .1/3 + g7.1/5 + g8 .1/4  + g9 .1/5) / 

(89/30) 
 
 
 
 
 
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The particular choice of weights taken in this example, gives more 

importance to gravity variations near the central points. However, if it is required 

that greater importance is to be given to gravity values at distant points (which is 

not the normal case) a direct proportionality is used in the design of the weight-

factors. Thus, instead of the values (1/3, ¼ and 1/5) which have been used in the 

above example, the weight-factors (3, 4 and 5) may be used. Choice of the 

running average parameters (number of weight factors in the running set and 

weight values) is decided upon by the interpreter according to his own judgment. 

 

(ii) Polynomial Fitting 

In this method, the Bouguer gravity profile (or map) is expressed by a low-

order polynomial such as the following: 

 
    g(x) =  C0 + C1x  + C2x2 + C3x3 + + C4x4 + C5x5 + …     (for a profile)  

    g(x,y) = C0 + C1x  + C2y + C3xy + + C4x2  + C5y2 + …      (for a map) 

 

 
          
 

          *        *        *        *        *        *        *        *        *        
           
 
 

          *        *        *        *        *        *        *        *        *         
         
  
          *        *        *        *        *        *        *        *        *         
          
 
 

          *        *        *        *        *        *        *        *        *         
         
   
        
  
    gP =  (g1.1/5 + g2 .1/4  + g3 .1/5  + g4.1/3 + g5 .1 + g6 .1/3 + g-

7.1/5 + g8 .1/4  + g9 .1/5)/(89/30) 
  

 

Fig. 9-14 Use of weighted averages to smooth Bouguer gravity data-set is given 

in the form of a uniform grid of points on a gravity map.  
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The coefficients (C0, C1, C2, C3, … ) are determined by a least-squares 

analysis. This will express the regional gravity which is subtracted from the 

Bouguer values to obtain the residual. This procedure (polynomial fitting) may 

be repeated several times to 1D-variation (gravity profile) or to 2D-variation 

(gravity map) using different polynomial degrees. The final choice depends on 

the degree of smoothing required by the interpreter (Fig. 9-15). 

 

(iii) Upward Continuation 

Mathematical theories have shown that a potential field, such as gravity and 

magnetic fields, can be determined over an arbitrary surface if it is known over 

an another surface below or above it (Peters, 1949). In other words, a Bouguer 

gravity map can be mathematically projected upward or downward relative to an 

adopted datum plane. This process, which is based on mathematical analyses, is 

called upward continuation when the field is transformed into a plane above the 

survey datum plane, and downward continuation when the transformation is to a 

plane below that datum plane which is closer to the causing geological anomaly. 

The important feature of this method is the fact that upward projection of the 

gravity field introduces a smoothing effect to the observed Bouguer anomaly 

map. With the increase of height of the projection, the gravity variations due to 

shallow and local sources (residual gravity) diminish, while at the same time, the 

regional anomalies become the more dominant.  

The upward continuation transformation can be carried out using a formula 

based on Stokes theorem but computation can be carried out numerically using 

the following formula (Robinson, 1988, P. 307): 

 
                                   gP = ( g1 f1 + g2 f2 + … + gN fN ) / N 

or, 

gP =  (Σ gi . fi) / N 

where,  

gP : Upward continuation transformed  gravity at point (P) 

gi  : Bouguer gravity value of the basic data, (i = 1, 2, 3, …, N). 

N  : Total number of Bouguer values included in the computation of gP. 

fi   : Weighting factor ( = hi.AP / 2π ri
 3 )  

hi  : Height of point (P) above the Bouguer anomaly plane. 

AP : Area over which the utilized Bouguer gravity values are distributed 

ri   : Distance of the point (P) from the gravity value (gi) 
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Fig. 9-15 Use of polynomial fitting method to smooth Bouguer gravity profile. The regional 

trend line (black curve) is superimposed on the original Bouguer profile (red curve). 
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These parameters are shown in Fig. 9-16. The area (AP in this example) is 

made up of 5-by-5 cells with Bouguer gravity values (g1 , g2 ,  g3 , … ,  g25). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

It is to be noted here that the weighting factors (fi) decrease with the increase 

of (r), the distance of point (P) from each of the original Bouguer values. 

Practically only a limited number of points (g1, g2, … , gN) are included in the 

computation of one transformed value, since the weighting factors (fi)  become 

too small, and hence insignificant, for too-distant points on the Bouguer map. 

 

 (iv) Second Vertical Derivative (SVD) 

The first vertical derivative (or the vertical gradient) of the gravity field, g is 

mathematically expressed by g` (= dg/dz) and hence, the second vertical 

derivative is given by g`` (= d2g/dz2). The quantity g` expresses the rate of 

change of the gravity anomaly with elevation. If it is computed at each 

Fig. 9-16 Definitions of the parameters used in the numerical computation of the upward 

continuation formula. 
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observation point and contoured, a vertical gradient map will be obtained. If we 

further derive the g``- map from the g`- map, we will obtain the second vertical 

derivative map. Since this map (also called curvature map) expresses the degree 

of sharpness of anomaly surface at each observation point, the regional anomaly 

will be effectively removed leaving the enhanced residual anomaly which is 

associated with shallow geological structures.  

The basic theory of the method and its application techniques are presented 

by Elkins (1951). In practice, the Bouguer gravity map can be transformed into a 

second derivative map through a number of computational methods. 

According to Dobrin (1962, P. 245-248), the second vertical derivative of 

gravity at an observation point (P) is the slope at the origin of a curve 

constructed by plotting the average of the gravity values (taken at points around 

concentric circles centered at P) against the square of the circle’s radius. The 

graphical procedure described by Dobrin involves construction of a special chart 

(shown in Fig. 9-17) used together with a formula for computing the second 

derivative anomaly. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It should be pointed out here that instead of the graphical method, a more 

accurate method can be achieved through using a numerical coefficient 

Fig. 9-17 Use of the circle-and-grid chart in computing the averages 

over circles of different radii, as applied in the graphical method of 

computing the SVD of a gravity map.  
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technique. Thus it is also possible to determine a set of weighting coefficients 

that can be used in an equation similar to that used in the upward continuation 

method to compute gradients (first derivatives) and curvatures (second 

derivatives) from a Bouguer gravity map.  

The numerical computation method is based on the fact that the gravity field 

satisfies Laplace`s equation ²g=0, which allows computing the second vertical 

derivative from the horizontal derivatives. Thus:  

  

²g = ∂²g / ∂x² + ∂²g / ∂y² + ∂²g / ∂z² = 0 

That is:  

∂²g / ∂z² = -(∂²g / ∂x² + ∂²g / ∂y²) 
 

When axes of coordinates are chosen such that contour lines become in the 

direction of one of the map-axes, we get a one-dimensional form of variation. 

Thus when x-axis is chosen to be perpendicular to contours, contour trend 

becomes parallel to the y-axis (∂²g / ∂y² = 0) and the relation takes the form: 

 
∂²g / ∂z² = -(∂²g / ∂x²) 

This equation allows to compute the SVD (∂²g / ∂z²) from the horizontal 

second derivative (∂²g / ∂x²) which can be readily computed from the Bouguer 

gravity map. To clarify the principle, let us see how to derive (∂²g / ∂x²) at a 

given point, based on an available gravity anomaly (Fig 9-18).The first 

derivative (Δg/Δx) and second derivative (Δ(Δg/Δx)/Δx) of the gravity profile 

(Fig 10-18a) are given by: 

 
[Δg / Δx]1 = (g2 - g1) / Δx ---------  at point P1 

 
[Δg / Δx]2 = (g3 - g2) / Δx ---------  at point P2 

hence, 

 
(∂²g / ∂x²) = Δ(Δg / Δx) / Δx = (2g2 -g1 - g3) / (Δx)2 ---- at point P 

 

In the case of a gravity map (Fig 10-18b), the SVD can be computed using 

the same principle followed in the profile case.  

 
(∂²g / ∂x²) = [2g2 -g1 - g3]x /(Δx)2 ---- at point P, in the x-direction 
(∂²g / ∂y²) = [2g2 -g1 - g3]y / (Δy)2 ---- at point P, in the y-direction 

 

giving, 
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(∂²g / ∂z²) = - [(∂²g/∂x²) + (∂²g / ∂y²)] = Σ[gi - 4g2]/(Δs)2 
 

where,  
              Δs = Δx = Δy 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The resolving power of the SVD method in bringing out the local and 

shallow-type of subsurface structures is greater than that brought about by 

normal graphical techniques. As it is shown in Fig. 9-19, the residual gravity 

map (Fig. 9-19, map-C) computed by the SVD method shows more details of the 

gravity anomaly changes than the anomaly map (Fig. 9-19, map-B) computed by 

conventional graphic techniques. Both of these maps were assumed to have been 

derived from the same Bouguer gravity map (Fig. 9-19, map-A). 

 

(v) Wavelength Filtering 

As in normal frequency filtering, wavelength filtering is based on Fourier 

Spectral-analysis theory. According to this theory, a function f(x), such as a 

gravity profile, can be analyzed into a number of cyclic curves (sinusoids) where 

each of them has its own wavelength ( λ ), amplitude (a), and phase shift (p) 

which is defined by geophysicists to be the offset of the nearest peak from the 

start-point of the profile (Fig. 9-20).  

Fig. 9-18 A graphical method used in computing the second derivative of Bouguer gravity 

in two cases: (a) gravity profile and (b) gravity map 
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By special mathematical integral (Fourier Transform), the given Bouguer 

gravity function can be transformed into the corresponding wave number 

domain. In fact, the Bouguer gravity variation, whether it is a profile g(x), or a 

map g(x,y), can be transformed into the corresponding Fourier spectrum which 

shows the distribution of gravity value as function of wavelength (or wave-

number). 

Wavelength filtering is a two-stage process. First the Bouguer data is 

Fourier transformed into the spectrum domain. In the second stage, a  certain 

wavelength range is deleted (filtered out) from the spectrum image to obtain (by 

inverse transform) the filtered gravity picture.  

Fig. 9-19 Schematic  representation of  a  hypothetical  Bouguer  gravity, 

map (a) , residual gravity computed by a graphical method, map (b) , and  

residual  gravity computed by  second derivative  method, map (c).      

               Map (A)             Map (B)               Map (C) 

λ 

a 

 x-axis 

p 

Fig. 9-20 Parameters of a sinusoidal function, f(x) = a sin 2π(x-p)/λ  

0 
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By deleting long-wavelength components of the spectrum, we obtain local 

(residual) anomaly profile (or map). Similarly, the regional anomaly picture is 

obtained by deleting short-wavelengths. Since the separation effect is not always 

perfect, several trial parameters of the designed filter are done and, the 

appropriate result can then be chosen according to the judgment of the 

interpreter. 

 

9.7. Interpretation Techniques 

The end result of a gravity survey (data acquisition and processing) is the 

Bouguer anomaly which is generally presented as a profile, g(x) or as a contour 

map g(x,y). As we have previously mentioned, the Bouguer gravity anomaly is 

created when a lateral change in the density (density contrast) occurs in the sub 

sea level plane. Since a gravity anomaly represents local (residual) variations 

superposed on a more extensive (regional) variation, then the separation of these 

two types of effects is first done, leaving the residual anomaly which is subjected 

to further analysis techniques for resolving the causing geological-anomaly. The 

gravity-to-geology transformation processes (i.e. gravity data interpretation) aim 

mainly at the determination of geometrical shape, location, depth, and mass of 

the causing anomalous mass. These are the main objectives of the interpretation 

process. 

Gravity data Interpreters normally use two types of interpretation 

techniques. These are the direct and indirect approaches of interpretation. As 

explained previously (Fig 10-8), the direct (or forward) approach involves 

calculating the geophysical response (gravity effect in this case) of a given 

geological model. The indirect (inversion) approach involves calculating the 

model parameters (shape, depth, mass, etc.) of a subsurface geological structure 

that has created the gravity anomaly. Based on these two concepts, interpretation 

of gravity data may use one or both of the following techniques: Trial-and-Error 

model analysis approach and Inversion model analysis approach. 

 

9-7-1 Trial-and-Error model analysis 

This method involves testing several different models by trial and error until 

the model which gives a gravity anomaly that best fits the observed anomaly. 

Here the anomalous body is simulated and its gravity effect is theoretically 

calculated and compared with that obtained from the actual gravity survey. The 

model parameters (shape, size, depth and density contrast) are altered several 

times until the computed gravity anomaly matches the observed anomaly which 
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is obtained from the survey. The proposed models are usually of simple 

geometrical shapes which can be of 2D or 3D types. Bodies such as spheres, 

cylinders, right rectangular prisms, slabs, elongated models of polygonal or 

circular cross sections are mostly adopted in these computations. 

In brief, the trial-and-error model analysis method consists of four steps: 

 Definition of the parameters (shape, size, depth and density contrast) 

of the model  

 Computation of the gravity anomaly of the adopted model. 

 Comparison of the computed anomaly with the observed anomaly. 

 Changing of model parameters to minimize differences between 

computed and observed anomalies aiming at getting best anomaly 

matching. 

This four-step procedure is iterative, repeated with different model 

parameters several times until best fit between the observed and the computed 

anomalies is obtained. Special computer programs are normally used to perform 

the iteration automatically. Thus, model parameters (including body shape, 

subsurface location and density contrast) are all allowed to vary within defined 

limits. The program will automatically alter the parameter values (within the pre-

stated limits) producing successively improved resemblance between observed 

and computed anomalies. 

 As an example for the application of this method let us assume that the 

observed gravity profile is represented by the continuous curve shown in Fig. 9-

21.  

As a first trial, an interpreter may suggest a spherical body (model M1) 

buried at depth (Z1) below sea level. If this model gave a computed profile 

which indicates that the model should be deeper, then a second deeper model 

(M2) at depth (Z2) is tested. If the computed profile indicated too-deep body 

then, the model parameters are appropriately changed in the subsequent trials 

until the computed profile for the model (such as M at depth Z ), that fits best 

the observed anomaly profile, is obtained. In this simple example only one 

model parameter (burial depth) was tested. In more complicated cases, other 

parameters (such as geometrical shape and density distribution) may need 

altering before a final acceptable model is achieved. 

It is very important to remember here that this process suffers from 

ambiguity since a given gravity anomaly could be produced by an infinite 

number of possible structural models. However, in the process of interpretation 

using model analysis, the additional geological information will reduce the 

ambiguity effect. 
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In simple model analysis, the most common simple geometrical shapes used 

are spheres, cylinders, right rectangular prisms, slabs and sheets. On the other 

hand, a compound model is made up of a number of bodies having arbitrary 

shapes. Normally the model (reached at by trial-and-error method) is considered 

as the final acceptable solution when it gives an anomaly that fits best the 

observed anomaly.  

Sometimes a model of simple geometrical form may furnish the adequate 

interpretation solution.  In other cases where the anomalies are complicated, 

detailed data of the structural model need to be taken in consideration. In such 

complicated models, it is more practical to use a compound model that consists 

of several bodies of arbitrary shapes and densities. Commonly, the adopted 

models are either compound 2D models made up of several elongated bodies or 

compound 3D models made up of horizontal polygonal plates. Thus, with 

additional knowledge (as for example from seismic data and from other 

geological information) 2D bodies of defined polygonal cross sections, or 3D 

models made up of a pile of polygonal plates, are used in building up of the 

proposed compound models (Fig. 9-22). As it is mentioned above, the extent of 

Fig. 9-21 Trial-and-error method applied in gravity interpretation. The model 

(M2) at depth (z2) gave a gravity profile (dotted curve) which is of best match 

with the observed Bouguer anomaly (continuous curve). 
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success in the interpretation process depends on the amount of additional 

geological information to be incorporated in the proposed model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       

Definitions and derivations of the gravity anomaly (vertical component of 

the gravitational acceleration) of the most common geological models are 

presented in chapter 8.  

 

9-7-2 Inversion Model Analysis 

The inversion technique is a procedure in which the model parameters are 

computed from the given observed gravity anomaly. This approach is normally 

referred to as "inversion" because computation is in the reverse direction to the 

process of nature where the buried mass creates the gravity anomaly. 

The gravity anomaly, expressed as a mathematical function g(x), or g(x,y), 

carries useful information about the causing anomalous body. The parameters of 

a gravity profile g(x), normally used to extract such information, are: 

 

- Anomaly maximum amplitude (gmax) 

- Anomaly width (xw) 

- Anomaly horizontal gradient (first derivative, g`) 

Fig. 9-22 Trial-and-error method of interpretation of gravity anomalies using compound 

2D and 3D structural models. 
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- Anomaly second horizontal derivative (g``) 

Using measurements of the parameters (gmax, , g`, g`` and xw) of the gravity 

anomaly, the inversion method can help to determine the model parameters (like 

depth or mass) of the anomalous body.  

 

9-7-2-1 Depth Determination 

The relation of depth of a body to the amplitude of its gravity profile comes 

from the fact that gravity value varies with the inverse square of the distance 

between the source and observation point. Thus, as the body depth increases, its 

anomaly amplitude decreases and vice versa. 

Pioneering work by Bott and Smith (1958, 1959) led to mathematical 

formulae connecting depth of the body to the parameters of its gravity anomaly 

(maximum values of amplitude, gradient and second derivative). The depth 

which is given by these formulae is the maximum depth at which the top of the 

anomalous body is located. This is also called (the limiting depth) of the 

anomalous body. The principle is applicable on anomalous bodies whose density 

contrast with respect to the host material is either entirely positive or entirely 

negative; a restriction which is normally satisfied in almost all cases met with in 

the exploration work. 

The following depth determination methods are in common use: 

 

(i) Anomaly Width Method  

One way of using the anomaly width is the half-width parameter (x1/2) which 

is defined to be the horizontal distance found between the maximum-point of the 

anomaly and the point at which the gravity is half of its maximum value (Fig. 9-

23). 

As an example let us consider the anomaly of a point-mass. The gravity 

profile, g(x), is given by: 

 
g(x) = G mz / ( x2 + z2 )3/2 

gmax = G m / z2  
 
Thus at the point where g(x1/2) / gmax = 1/2, we get the relation: 

 
z = (x1/2) / (41/3 - 1)1/2 = 1.305 x1/2  
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In case of a spherical body (which has the same form of anomaly as the 

point mass), the depth z from surface to the top of the spherical body (i.e. 

limiting depth) is always less than depth to its center. That is: 

 

z  1.305 x1/2 
 

For an anomaly g(x) = 2G µ z / ( x2 + z2 ) caused by an infinite horizontal 

line mass, a similar procedure would give the depth (z) to be equal to the half-

width (x1/2). That is: 

z = x1/2 
 

Again when the 2D body is not an idealized line mass, z would represent the 

limiting value of the depth to the top of the 2D body. Hence: 

 

z  x1/2 
 

Fig. 9-23 Anomaly parameters used in inversion analysis used in depth estimation. 

Δg : Gravity anomaly, Δgmax : anomaly maximum value, 
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It should be noted here that by assuming a simple relation between an 

anomaly arbitrary width (xw), defined in Fig 10-23, and depth (z) the 

corresponding value for the g(xw)/gmax ratio can be calculated. Thus for example, 

by taking xw = z for the case of a point-mass anomaly, we get : 

 
g(xw) / gmax = z3 / (2z2)3/2 = 0.354 

 

Thus at the point where g(xw)/gmax = 0.354, the depth (z) is equal to the 

anomaly width (xw) measured at that point. 

 

(ii) Anomaly Gradient Method  

By definition, the gradient (dg/dx) of a function g(x) expresses the rate of 

change of the function g(x) with respect to the horizontal distance (x). This 

parameter (also called horizontal gradient, g`) of gravity anomaly bears a 

mathematical relation to depth of the causing anomalous body. By considering 

the line-mass and point-mass to be representing shapes of a 2D- and spherical 

3D-models respectively, it is possible to derive estimates of their limiting depths 

from the expressions that relate the maximum amplitude of the anomaly (gmax) to 

the maximum value of its gradient (g`max).  

Taking the case of an infinite horizontal line mass, the gravity anomaly g(x), 

its gradient g`(x) and second horizontal derivative g`` (x) are given by: 

 
g(x) = 2G µ z / ( x2 + z2 ) 

 
`(x) = -4G µ zx / ( x2 + z2 )2 

 
g`` (x) = -4G µ z (z2 -3x2) / ( x2 + z2 )3 

 

where the first and second horizontal derivatives g`(x) and g`` (x) express 

the rate of change of anomaly g(x) and gradient g`(x) with respect to horizontal 

distance (x). 

Solving g``= 0 for x, we get z2 - 3x2 = 0, giving z = ±x.3 which means that 

the second horizontal derivative (g``) is equal to zero at the two points (x = 

+z/3) and (x = -z/3) and it has a negative sign between these two points and 

positive sign outside them. This implies that at the two points (x = ±z/3) the 

gradient g`(x) attains the maximum value of: 

 

g`max = 33G µ / 4z2 



135    Chapter 9 : Interpretation of gravity anomalies 
 

 
and from the anomaly maximum value (gmax = G m/z2 ), we can form the ratio: 

 

gmax / g`max = 8z/33 = z / 0.65. 
 

Thus for a 2D body, the limiting depth [z]2D can be computed from the ratio 

of maximum value of its anomaly (gmax) to the maximum value of its gradient 

(g`max). That is: 

 

[z]2D  0.65 gmax / g`max 
 

Similar mathematical analysis for the 3D body (approximated by a sphere), 

gives the following corresponding formula: 

 

[z]3D  0.86 gmax / g`max 
 

and for a semi-infinite horizontal sheet, the gravity anomaly (g) and its gradient (g`) 

are given by: 

g = 2Gρt ( / 2 + tan-1(x/z)),   gmax = 2Gρt 
 

g` = 2Gρtz / (x2 + z2),            g`max = 2Gρt/z 
 

From these relations the limiting depth (z) of the sheet is therefore given by: 

 

z    (1/) gmax / g`max 

Again, by assuming a simple relation (for example, xw=z) between an 

anomaly arbitrary width (xw) and depth (z) the ratio g(x)/g`(x) can be used to 

calculate the limiting depth, thus: 

 

[z]LINE MASS  1.0 [g / g` ] 

 

[z]SPHERE   1.5 [g / g` ] 

 

[z]SHEET   (2/3) [g / g` ] 

It is worth noting that on comparing the gradient value g`max ( = G µ.33/4 

z2) with gmax ( = 2G µ /z), we find that the gradient of the anomaly falls off with 

depth more rapidly than the anomaly itself by one degree of power. This implies 

that the gradient (g`max) is more sensitive in indicating depth changes than the 

anomaly (gmax) and  g`` (x) has the effect of getting rid of the constant gradient 
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(i.e. constant-dip regional) anomaly, since in this case (where g` = constant) its 

derivative is equal to zero. 

 

9-7-2-2 Layer Thickness Determination 

By making use of the formula for the infinite horizontal slab, it is possible to 

calculate a rough estimate of the thickness (t) from its gravity anomaly (g = 

2Gρt): 

 

t = g / 2Gρ 

Since, in practical application g is computed for a defined model which is of 

restricted and not infinitely extensive model, the calculated thickness is always 

under estimated. 

 

9-7-2-3 Basin-Shape Determination 

In general, a sedimentary basin is characterized by its inward dipping 

contacts whereas a granite intrusion, for example, has its edges dipping outward. 

The Bouguer gravity profiles of these types of structures show inflection points 

where the horizontal second derivative is of maximum value. 

The position of inflection points on the gravity profile can be used as an 

indication guide for discriminating the type of structure of the anomalous body. 

The inflection points on the gravity anomaly are found near the uppermost part 

of the anomaly in case of a sedimentary basin and near the lowermost part of the 

anomaly in the case of a granitic body. Identification of these points becomes 

easier and clearer on the second horizontal derivative (g``(x)) where the points 

are located at the maximum values of the g``-profile (Kearey & Brooks, 1987, P. 

162). 

9-7-2-4 Mass Determination 

As in the case of depth determination, the inversion approach can furnish 

information about the total mass of the anomalous body. Since the gravity 

anomaly is function of the density contrast (and not of the actual body-density), 

the mass of the anomalous body, computed from its gravity anomaly, will 

represent mass contrast rather than actual mass. The mass contrast (normally 

referred to as excess mass, Me) is defined to be the difference in mass between 

the body’s actual mass (Ma) of density (ρa) and the mass of the host medium of 

density (ρh) filling the same volume occupied by the body. Since, by definition 
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Ma/ρa is equal to Me/(ρa- ρh) which is equal to the volume of the anomalous 

body, the actual mass Ma is computed from the relation: 

 
Ma = Me . ρa / (ρa - ρh) 

 Derivation of the formula used to compute the excess mass (and then the 

actual mass) from the gravity anomaly is based on Gauss’s flux theorem. The 

flux of a vector field (F) through an elementary area (dS) is defined to be the 

normal component of the field (F cos) multiplied by the traversed area (dS), 

and the total flux (Φ) through the whole of a defined area (S) is given by the 

surface integral:  

 

Φ =  F cos dS  

Gauss’s flux (or divergence) theorem states that the total flux of a vector 

field (Φ) through a closed surface is proportional to the total strength of the 

enclosed field source (Fig 9-24). This relation holds regardless of the surface 

shape, size, and position of the enclosed field source.  

        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

According to Gauss’s theorem, the normal component of the gravity field 

(gM) due to an anomalous body of mass (M) located inside a sphere of radius (R) 

and surface area (4R2), is given by: 

 

 gM . dS = - (G M/R2) . 4R2 = - 4G M 

 
 

F 
 

F cos 
 
 

dS 
 

Field source 
 
 

Closed surface, S 
 
 

Fig. 9-24 Definition of the flux of a vector field (F) generated by a field source 

located inside a closed surface (S), Fcos is normal to surface. 
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The minus sign indicates that gM is in opposite direction to the outward 

pointing normal. The enclosing spherical surface is taken to be of a radius (R) 

which is large enough to the extent that allows using the gravity formula for the 

point-mass model. 

To find an estimate of excess mass (Me) of a 3D-body causing a gravity 

anomaly g(x,y), let the body be enclosed by a hemisphere for which the plane 

(z=0) forms the flat part of its surface. For this model, the value of the surface 

integral for the hemisphere is half that of the whole sphere, and hence the surface 

integral of the plane surface (xy-plane) will be given in Fig. 9-25: 

 

 g(x,y) dx dy = - 2G M 
 

Hence the excess mass (Me) is given by:  

 

Me = (1 / 2G)  g(x,y) dx dy  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In practice, the integration is replaced by summation over the survey area 

which is the xy-plane. This involves dividing the area into square cells of area 

ΔS (= Δx Δy) each, and measuring anomaly value (gM) for each of these squares. 

The excess mass (Me) is then computed from the following summation formula: 

Fig. 9-25 Computation concept of excess mass from gravity anomaly, using 

Gauss’s theorem. 
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Me = (1/2G) Σ gM Δx Δy 

The excess mass (Me) in metric tons, obtained from the numerical 

summation, where the residual gravity (gS) is in milligals and distances (Δx and 

Δy) are in meters, is given by Telford et al (1990, p 48): 

  
Me = 26.3 Σ gM Δx Δy 

 

The actual mass (Ma) is then found from the relation: 

 
Ma = Me . ρa / (ρa - ρh) 

 

Since the summation is taken over a finite area, which is not infinite as 

required by the theorem, the calculated mass is always underestimated.  

In applying this formula, the residual anomaly (gM) must be free from any 

regional trends or other noises. The advantage of the method is that it is 

applicable regardless of the shape and position of the enclosed model.  

In certain cases where the buried anomalous masses are of simple 

geometrical shape, there are faster ways of estimating excess masses. These are 

based on measurements of the maximum value of the gravity anomaly. For a 

spherical body of excess mass (Me) at depth (z), for instance, the maximum 

value of anomaly (gmax) is equal to GMe/z2 and hence the excess mass (Me) is 

given by: 

 
Me = z2 gmax / G 

Where the depth (z) is determined from gmax/g`max ratio as shown above. 

For a given density contrast (ρa - ρe), the radius (R) and size of the sphere 

can be obtained from: 

Me = 4R3 (ρa - ρe) / 3 
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Chapter 10 

CRUSTAL STUDIES AND ISOSTASY 
 
 
 

10.1. The Structural Model of the Earth 

Earthquake seismology was the principal source of information that led to 

the discovery of the Earth internal structure. From reflection and refraction 

seismic waves generated by earthquakes, it is inferred that the Earth is made up 

of three main zones. These are a central spherical body (the Core) surrounded by 

a thick solid mantle covered by the surface relatively thin crust (Fig. 10-1). 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

            
 
 

The Core is found to be made up of a solid nucleus (the Inner Core) 

surrounded by a liquid zone called the Outer Core. These zones are separated by 

discontinuity surfaces. The surface separating the Core from the Mantle is called 

Crust  
                      
 
                        
Mantle   
   
 
 
 
 
                                                                    

      35  km 
 

 
          
     
     2900 km 

 
     5000 km 

 
6370 km 

 
        

         Fig. 10-1 Structural model of the planet earth 

 

                                                               
Core   
        



142 

Gutentberg Discontinuity and that separating the Mantle from the Crust is called 

Mohorovicic, or just Moho Discontinuity.  

The Earth zones are characterized by their own physical properties. In 

particular the mean values of density and seismic propagation velocity have been 

determined for each zone. Statistics of the densities and velocities are given in 

the following table. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

10.2. The Structural Model of the Crust 

From seismological and other geophysical studies, it became apparent that 

the Earth Crust under continents is of thickness (30-60) km. made up of felsic 

(SiAl) rocks of density 2.6 - 2.8 gm/cc and mafic (SiMa) rocks of density 2.8-3.0 

gm/cc. At the base of the crust there is the Mohorovicic (Moho) discontinuity 

which separates the crustal rocks from the underlying homogeneous ultra basic 

(ultramafic) denser rocks of the Mantle whose density exceeds 3.3 gm/cc. The 

crust beneath the oceans is of thickness 5-10 km and consists mainly of mafic 

rocks of the SiMa type. The SiAl is believed to be missing under the oceans. 

  CRUST 
  Mean thickness 35 km 
  Density = 2.7 – 2.9 gm/cc 
   
 

(Mohorovicic, 1909) 
 

 DISCONTINUITY                      EARTH  ZONE 

MANTLE 
Thickness = 2900 km 
Density = 3.3 – 5.7 gm/cc 
VP = 8.0 – 13.6 km/sec 
 (Gutenberg, 1914) 

Depth = 2900 km 
 
 

OUTER CORE 
Thickness = 2100 km 
Density = 10.0 gm/cc 
VP = 10.3 km/sec 
 

 (Lehman, 1936) 
Depth = 5000 km 
 INNER CORE 

Density = 15.0 gm/cc , 
Vp = 11.2 km/sec  

 
                                                    EARTH CENTRE     
                                                     At  Depth = 6372 km 
 

Summary of density and seismic velocity characteristics of 
the Earth different zones 
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Another important feature of the crustal zone is that it is thicker under the 

elevated continental land blocks and thinner under oceans. Seismological data 

(supported by gravity data) indicated that the crustal thickness near coastal areas 

is about 30 km increasing to about 60 km under mountain ranges (mountain 

roots) and decreasing to about 5 km below ocean floors (Fig. 10-2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

10.3. Role of Gravity Data in Crustal Studies 

In 1735, an expedition headed by Pierre Bouguer was setup by the French 

Academy of Science to collect information for studying the shape of the Earth. 

In his studies of the Andes mountain range in Peru, Bouguer noted that the 

measured gravitational attraction is smaller than that expected from those 

mountains. More than a century later, Pratt in 1855, working in a plain south of 

Anatomy of the Earth Crust 

 1 

 4 

10 Oceanic Deep (5-8 km deep) 

 5 

 9 

 7 

 8 

 6 

Mountain Range 
 
Continental Platform 
 
Continental Shelf 
 
Continental Slope 
 Ocean Floor (typically 5 km 
deep) 
 
 

Conrad discontinuity 
 
 

11 

14 

12 

Moho discontinuity (about 35km below 
continental platforms and 10 km under ocean 
surfaces) 
 
Mountain root (Over 60-60 km deep) 
 
 

Basement (typically 15 km 
deep) 
 

13 

 2 

 3 

 4 
14 

 5 

 6 

 7 
 8 

 9 10 
11 

12 

13 

 Sea Level 

Fig. 10-2 Schematic representation of the anatomy of the Earth crust 
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the Himalayas, found that the observed plumb line deflection angle (5.23 

seconds) is less than one-third the theoretical value (15.885 seconds). 

Both of Bouguer and Pratt observations have led Airy in 1855 (shortly after 

Pratt’s observation) to the inference that mountain ranges have roots. The 

mountain material filling the depression of the Moho discontinuity caused by the 

sinking crustal block represents the mountain root. This ice-berg like model 

assumes that a mountain (including its root) is composed of relatively low-

density material of Sialic type extending down in the denser medium of the 

Upper Mantle. Seismological information showed that the depth of the Moho 

under the Alps in South Germany, for instance, increases from 30 km to about 

50-60 km in the Central Alps (G. Dohr, 1975, p176). 

In correspondence to lateral variations of thickness and density of the Crust, 

Bouguer gravity is expected to change over the Earth surface. In actuality, 

Bouguer anomalies are commonly found to be of large and negative values over 

thick (mountainous) crust, near zero-value over coastal regions, and large and 

positive over thin (sub oceanic) crust (Fig. 10-3).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10-3 Large-scale variations of Bouguer anomaly due to Earth major structural changes. 
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The zero value of the Bouguer anomaly found at coastal areas represents 

gravity effect of a crust having uniform thickness and density. In general terms, 

deviations from the zero value are due to density changes in the crustal material 

below the geoid surface. Decrease of the Bouguer anomaly, which is observed in 

practice, is related to density deficit under elevated areas, whereas the increase is 

due to density surplus under oceanic crust. 

Thus the Bouguer gravity computed at an observation point located over an 

elevated continental area becomes lower than that found over normal coastal 

areas where Bouguer anomaly is zero. Similarly, the Bouguer value over an 

oceanic region where the crust is thin (having greater share of high-density 

mantle material) becomes larger than the normal coastal crust. This kind of 

behavior is explained by the fact that, in computation, no allowance is made to 

the existence of mountain roots and of sub oceanic antiroots. The root model 

furnished an adequate interpretation for the negative Bouguer gravity anomaly 

commonly found over elevated continental blocks. 

In practice, Bouguer gravity over the normal Earth crust is found to be in the 

range of -20 to +20 mgal, averaging to about zero over coastal areas. However, 

over elevated areas where the crustal thickness reaches 60 km, the Bouguer 

value decreases to less than -200 mgal, whereas over oceans, where the solid part 

of the crust reaches a thickness of about 5 km, the corresponding value becomes 

greater than +200 mgal. 
 

10.4. Concept of Isostasy 

The term isostasy was introduced by C.E. Dotton in 1889 to describe the 

phenomenon which expresses the state of hydrostatic balance of the Earth Crust 

which is resting on the Mantle. According to the isostasy concept, the structural 

model of the Crust consists of continental blocks “floating” on effectively liquid 

Mantle-medium and the balancing states of these blocks are governed by block 

thicknesses and density distribution within them.  

For a system of crustal blocks at hydrostatic equilibrium, the exerted 

cumulative pressure at a point within the mantle is function of the density by 

height product of the rock column extending from that point to the top of the 

block. A datum-plane (normally taken at the deepest level of the crustal base 

where the pressure is constant (isopiestic plane) is called compensation level and 

its depth below sea level is called depth of compensation (Fig. 10-4). 

The equilibrium state (referred to as isostatic equilibrium) is achieved when 

the crustal blocks are in hydrostatic balance with each other and each block is 

perfectly compensated by the denser material of the Mantle. 
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Deviation from the free float equilibrium conditions occurs when the crustal 

parts have some elastic strength causing partial support to these parts and 

consequently leading to incomplete hydrostatic equilibrium. Thus, with the 

presence of material having elastic strength, topography can be partially 

supported by the near-by crustal parts leading to the state of incomplete 

compensation. Conversely, those parts of the crust where compensation is not 

perfectly achieved (i.e. incomplete isostatic equilibrium) exhibit a state of 

material under stress conditions.Perfect hydrostatic balance (i.e. full 

compensation) occurs at those parts of the crust where they effectively have no 

elastic strength. 

 

10.5. Isostasy-Density Relationship 

Since isostasy is based on the condition of hydrostatic balance of crustal 

blocks, it is therefore mainly governed by the density factor. Strictly speaking, 

the rise or fall of a certain crustal block under an isostatic effect is dependent 

upon the density contrast between the moving block and that of the surrounding 

Mantle medium. In other words, the isostasy phenomenon is governed by mass 

surplus (high-density) and mass deficiency (low-density) of the Earth crustal 

blocks resting on the Mantle. Thus, according to the buoyancy principles, the 

higher the density (ρ) of a crustal block the deeper it will sink into the Mantle 

(Fig. 10-5). 
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Fig. 10-4 Definition of depth of compensation concept associated with the Earth Crust 

under hydrostatic equilibrium. At the level of depth of compensation the cumulative 

pressure (∑ghρ ) is constant . 
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The direct relationship between isostatic balancing-state of the different 

crustal blocks and rock-density distribution within these blocks forms the basis 

for making the gravitational measurements as the appropriate tool for isostasy 

investigation.  

There are two proposed models concerning density distribution within the 

isostatically balanced masses of the Earth Crust. These are the Pratt-model 

(blocks of different densities) and Airy-model (blocks of equal densities). It is 

worth noting here that gravity data have supported the isostasy phenomenon but 

cannot differentiate between the two proposed models. Geological and 

seismological information supports Airy’s model more than Pratt’s. 
 

 

10.6. Hypotheses of Isostacy 

In the year 1855, two hypotheses for the isostatic models were suggested by 

two British scientists; the geodesist J. H. Pratt (1809 - 1871) and the astronomer 

G. B. Airy (1809 - 1892). Both of these hypotheses are based on the “free-float” 

model where large-scale crustal blocks are assumed to be resting on the lower 

heavier medium (the earth Mantle). The crustal masses are at hydrostatic balance 

where the weight of these masses is balanced by the force (created due to the 
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Fig. 10-5 Isostatic sinking movement of crustal blocks as function of density contrast with 

respect to the Mantle. 
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displaced material below) which is tending to elevate them. The extent of a 

block-sinking is function of both of the density and thickness of the block. 

Basically, the two hypotheses are built upon the floating-block model where 

by the Earth lithosphere (crustal material) is at a gravitational equilibrium with 

the heavier rock medium below (asthenosphere). The difference fundamental 

difference between the two hypotheses is in the density distribution of the 

moving blocks. 

The two hypotheses are briefly described here below:  

 

10.5.1 Pratt’s Hypothesis 

J. H. Pratt, in 1859, postulated that the upper part of the Earth crust is lighter 

than that of the supporting lower medium. The proposed model consists of a 

crust of variable elevation but having constant thickness below sea-level. In 

other words, depth of compensation is taken to be coincident with a base-level 

which is common to all of the crustal blocks. At this level (the compensation 

level), the hydrostatic pressure exerted by the mountain system as well as ocean 

trenches will be the same. The rock density of the different blocks varies in such 

a way as to keep hydrostatic pressure constant at the compensation level 

regardless of the surface elevation (Fig 10-6). 

In the oceanic areas, this theory demands higher density of sub-sea rocks to 

compensate for the lower density of water in those parts of the crust. The 

mountains, on the other hand, are compensated by density deficiency. This 

implies that the rock density (ρ) of the whole mountainous block (from surface 

down to the compensation level) is in inverse proportionality to its surface 

elevation (E). For two blocks of densities (ρ1 and ρ2) which are hydrostatically 

balanced,  we can write: 

ρ 1 (E1 + D) = ρ2 (E2 + D)  

that is: 

 ρ1/ ρ2 = (E2 + D) / (E1 + D) 
 

This formula says that the outcropping part of a crustal block is inversely 

proportional to its density. In other words, the higher the elevation (E) of the 

block the lower density (ρ) of its constituent material will be. 
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10.5.2 Airy’s Hypothesis 

From a triangulation survey in India, J. H. Pratt observed in 1855 that the 

Himalaya Mountains have deflected the plumb line by an angle of 5 seconds 

instead of 15 seconds as theoretical calculations demanded. Less than two 

months later, G. B. Airy put a hypothesis to explain Pratt’s observation. He 

suggested the existence of the mountain-root which is formed of material having 

the same density as that of the outcropping part of the mountain which is floating 

on a “liquid” substratum of greater density. 

Airy’s hypothesis states that the Earth crust is a rigid shell floating on the 

liquid-like Mantle material which is of greater density. Thus, under high 

mountains, the base of the crust is pushed into the Upper Mantle deeper than that 

of non-elevated plane-land such as coastal areas (Fig. 10-7).  

Depth of compensation is taken to be at the depth of the deepest part in the 

crust. At this level (the compensation level), the hydrostatic pressure exerted by 

the mountain system and ocean trenches is constant. Crustal blocks which are 

under hydrostatic equilibrium, as this hypothesis demands, will give rise to 

“roots” under mountains and “anti-roots” under oceanic deeps. The amplitude of 

the mountain root is directly proportional to the mountain elevation. Referring to 

(Fig. 11-7), we can write (approximating the root-depth by the depth of 

compensation, D): 

ρC (E + D) = D ρM  
 

Fig. 10-6 Isostatic equilibrium model according to Pratt’s hypothesis 
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D = ρC E / (ρM - ρC) 
 

 

 

 

 

 

 

 

 

 

 

 

 

In worldwide calculations, a density of ρC = 2.8 is used as an average value 

for the whole Crust and ρM = 3.27 for the material below the Moho discontinuity 

(Gutenberg, 1959, p. 50). From the substitution of these values in this equation, 

it becomes apparent that the depth of a mountain root is about six times greater 

than the mountain elevation. 

It is apparent that Airy’s model differs from that of Pratt in the assumption 

that in Airy’s model the rock density of the crustal block is constant while the 

depth of compensation level below the surface of the crustal block varies in such 

a way as to bring about the necessary hydrostatic equilibrium. 

 

10.7. Modifications to the  Isostatic Models  

Both of the two hypotheses have been subjected to modifications. J. H. 

Hayford (1868-1925) has done modification to Pratt’s hypothesis and W. A. 

Heiskanen (1895-1971) has introduced modifications to Airy’s hypothesis. 

Heiskanen modification of the Airy hypothesis allows some of the balance to be 

accommodated laterally by the surrounding medium in addition to the vertical 

buoyancy-created forces. 

Airy’s model 
   ρ1  = ρ2 = ρ3 = ρC 

Fig. 10-7 Isostatic equilibrium-model according to Airy’s hypothesis 
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In the gravitational anomaly studies, an isostatic anomaly depends on the 

type of the crustal model (Airy’s or Pratt’s) adopted in the reduction 

computations. 

The problem of how much of isostasy in a given region is a consequence of 

depth variation (Airy’s model) and how much of it is due to density variation 

(Pratt’s model). This subject is extensively discussed by many geophysicists 

(Gutenberg, 1959, p46-59).  

Two main modifications to the original models were introduced for getting 

more realistic results.  These are: 

 

(i) Pratt-Hayford Isostatic System  

Hayford (1910) modified the Pratt model by assuming that the depth of 

compensation to be taken as being measured from the Earth’s physical surface 

and not from the sea level. This implies that the compensation level is not 

constant but varies with measurement location (Gutenberg, 1959, p49). 

 

(ii) Airy-Heiskanen Isostatic System 

Heiskanen (1936) suggested using a crustal model that consists of a number 

of layers having thickness and density values inferred from other independent 

sources (as from seismic data). Heiskanen modification to Airy’s model allows 

density to vary compensating 2/3 of the topography with roots. The crustal 

blocks, due to their finite strength, are not perfectly free floating bodies. The 

icebergs like mountains have roots which start at sea-level and extend deeply 

into the Upper Mantle. 

Vening Meinesz (1887-1966) suggested that some of the balance is 

accommodated laterally by the surrounding region rather than being balanced in 

the vertical direction only. The “radius of regionality” is of the order of 200 km. 

(Sheriff, 1973, p117). 

 

10.8. The Isostatic Correction  

As mentioned, the Earth Crust is, in general, thicker under elevated regions, 

getting thinner towards coastal areas and under oceans. The lateral variation in 

thickness and density of the crustal material is one of the prevailing physical 

characteristics of the crust. The isostatic models for the crust provided evidence 
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for the large-scale variations in thickness and density like mountain roots and 

sub oceanic anti-roots as presented above. These changes are supported by the 

computed Bouguer regional gravity, which is found to be of large and negative 

values over thick (mountainous) crust, near-zero over coastal regions, and large 

and positive over thin sub oceanic crust (see Fig 11-3). The explanation for these 

variations of the Bouguer anomaly is that, in the corrections, no allowance is 

made for the changes demanded by the isostatic model of the Crust. Thus, to 

remove the gravity contribution of the isostatic changes, the Bouguer gravity 

needs to be further corrected for the effect of the isostatic model. 

The isostatic correction is defined to be the gravitational effect of lateral 

density and thickness variations of the major crustal blocks. The computation 

method depends on the adopted type of the isostatic model; Pratt’s, Airy’s, or 

that modified by Heiskanen and Meinesz. In calculating the isostatic correction, 

the Earth surface surrounding the observation point is divided into zones (as in 

terrain correction) and the total isostatic correction is obtained by adding up the 

contributions of the individual zones. To facilitate calculation, tables and maps 

were compiled to be used for the corrections.  

 

10.9. The Isostatic Anomaly  

The isostatic anomaly expresses the gravity value at sea level in which 

gravity contribution, from all of the material found between observation point 

and the sea-level, is removed. In addition to that is removing the effect of the 

isostatic density-model as mountain roots and sub-ocean anti-roots. 

Thus the isostatic anomaly is obtained by adding the isostatic correction 

(IC) to the Bouguer anomaly (ΔgB). The formal definition of the isostatic 

anomaly (ΔgI) would therefore take the following form: 

 

ΔgI = ΔgB + IC 

hence, 

ΔgI = gO + FAC - BC + TC - gN + IC 
 

Where gO is the measured gravity, gN the Normal gravity, FAC, BC and TC 

are the free-air, Bouguer and Terrain corrections respectively. 
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10.10.   State of Isostatic Compensation 

The state of isostatic compensation of the various parts of the earth crust can 

be inferred from gravity anomalies. Because the root material has lower density 

than the adjacent Mantle rocks, the gravity effect due to the root body is negative 

and hence the isostatic correction (IC) will be positive. As given above, the 

isostatic anomaly (ΔgI) is defined as the Bouguer anomaly corrected for the low-

density root zone. That is: 

ΔgI  = ΔgB + IC 
 

ΔgI  = ΔgFA - BC + IC 
 

Where ΔgFA is the Free-Air anomaly, ΔgB Bouguer anomaly, and BC is 

Bouguer correction. 

In general, Bouguer anomalies are negative over elevated parts of the Crust 

and positive over oceanic areas. These observations confirm that continental 

topographies and ocean basins are compensated by the deep parts which are of 

negative and positive density contrasts respectively. 

The isostatic anomaly may be negative, zero, or positive, depending on the 

value of the isostatic correction relative to the computed Bouguer anomaly. 

These cases can be interpreted as follows (Fig 10-8): 
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      Fig. 10-8 The three types of compensation state 

 



154 

 

(i) Negative Isostatic Anomaly (case of over compensation) 

A negative isostatic anomaly indicates a case of over compensation. This 

occurs when a land-high is reduced (as by erosion) faster than density-deficiency 

is readjusted to bring about the necessary condition for regaining the isostatic 

equilibrium. In this case, the isostatic anomaly suggests a root body which is 

smaller than the real root size, so, ΔgB , reflecting real root size, is negative and 

numerically larger than the computed isostatic correction (IC) . Thus, adding the 

positive anomaly of the smaller-than-real root to the large and negative Bouguer 

anomaly leaves a negative isostatic anomaly (ΔgI < 0).  

When this is the case, the topographic feature is expected to be rising to 

regain isostatic balance. 

 

(ii) Zero Isostatic Anomaly (case of perfect compesation)  

Zero isostatic anomaly expresses that a topographic feature, such as a 

mountain range, is in hydrostatic equilibrium with its root zone. In this case, the 

Bouguer anomaly (ΔgB) and the isostatic correction (IC) are equal in magnitude 

but opposite in algebraic sign giving zero-value for the isostatic anomaly (ΔgI = 

0).   perfect isostatic compensation.  

(iii) Positive Isostatic Anomaly (case of under compensation) 

With the case of under compensation state, an elevated topographic feature 

suggests a root-body which is larger than the real root size. In this case, the 

Bouguer anomaly (ΔgB) caused by the real root-body, which is smaller than the 

predicted size, is negative and numerically smaller than the computed isostatic 

correction (IC).By adding the larger isostatic correction (IC) to the smaller 

negative Bouguer anomaly () we obtain a positive isostatic anomaly (ΔgI > 0). 

The case of under compensation occurs when an elevated topographic 

feature is supported wholly or partially by an external force (as the rigidity of the 

crust) rather than being supported only by the buoyancy effect created by the 

density-deficiency of the root-zone. If, for any reason, the external force ceased 

to be effective then that feature is expected to be involved in the sinking process.  

It is apparent from the above discussion that determination of the isostatic 

anomaly depends on the type of assumption (Pratt’s- or Airy’s-model) adopted 

for the computation. isostatic anomaly investigations gave stronger support to 

Airy’s hypothesis as they gave results that are supported by seismological 
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information as regards the crustal structure. In general, the isostatic anomalies 

are found to be of large negative values reaching -200 mgal along some ocean 

deeps as in East and West Indies. On the other hand, they are as large as +100 

mgal on under-compensated areas as for example, on Cyprus (Dobrin, 1960, 

p196). In general, the continents are in near-equilibrium giving near-zero 

isostatic anomalies. 

The isostatic anomaly is not usually needed when the interest is focused on 

small and local anomalies. This is because isostatic anomalies give information 

on large-scale continental and oceanic features of the earth crust. Thus, it is not 

needed in geophysical exploration activities oriented to detailed relatively 

shallow geological structures. 

 

10.11.  Deviations from Isostatic Equilibrium 

A crustal block is in isostatic equilibrium when it can freely move in a 

vertical direction under the effect of the Earth gravitational force. The block is 

considered to be deviating from isostatic equilibrium when it is uplifted or 

down-pulled by any cause other than the gravitational force. For perfect isostasy 

we must have a rigid block freely floating over liquid medium. This is not the 

case in reality since crustal blocks are not perfectly separated masses and the 

mantle material is not an ideal liquid medium. Deviations from the ideal isostatic 

equilibrium have been cited in certain parts of the earth crust. Examples of such 

isostatic deviations are presented here below (paragraph 11.13). 

Isostatic gravity anomalies can provide indications on the nature of 

deviation from the ideal isostatic equilibrium. Thus large-scale elevated regions 

of the crust which have actual roots (anomalous crustal sagging creating perfect 

isostatic equilibrium) lead to negative Bouguer anomaly and zero-value isostatic 

anomaly. Cases where the elevated areas have no roots will give zero Bouguer 

anomaly and positive isostatic anomaly. If, however, the root is still there after 

the overburden deposits (elevated topographies) have been removed, both of the 

Bouguer and isostatic anomalies become negative.  

 

10.12.  Testing for Isostatic Equilibrium 

To test for the isostatic equilibrium, consider a block of topographic 

elevation (E) and density (ρC), which is having a root of thickness (R). For Airy-

type of compensation, we can write: 
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ΔgI  = ΔgFA – BC + IC 

Since, 

ΔgI = ΔgB + IC and ΔgB = ΔgFA – BC. 

The root is normally broad compared with its thickness and thus can be 

considered as a slab as far as computation of its gravity contribution (IC). Using 

this approximation we can write (as in computation of Bouguer correction (BC) 

presented in 8.3.2): 

IC = 2πG (ρM - ρC) R 

BC = 2πGρCE 

But, from Airy’s isostatic model, isostatic equilibrium (see paragraph 

10.5.2) the root thickness (R) is given by: 

 
R = ρC E / (ρM - ρC) 

hence, 

ΔgI  = ΔgFA  

The final conclusion is that the isostatic anomaly (ΔgI) of an Airy-type 

isostatic model (in perfect isostatic equilibrium) is equal to the free-air anomaly 

(ΔgFA). This result furnishes a simple method for testing the state of isostatic 

equilibrium. 

 

10.13.  Isostatic Rebound Phenomenon 

Geological processes which are going on throughout the geological 

history bring about material redistribution in the earth crust. These processes 

cause upsetting of the isostatic equilibrium among the different parts of the 

crust. Loaded zones of the crust start to sink and the unloaded zones to rise. 

This readjustment process leads to a restoration process of the original 

isostatic equilibrium. 

Recovery of isostatic equilibrium after removal of the load is known as 

isostatic rebound. It is controlled by the size and density distribution of the 

concerned crustal block and the viscosity of the asthenosphere in which the 

block is sinking. The rate of isostatic rebound movement can therefore 

provide some assessment of the viscosity of the Upper mantle. 
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10.14.  Examples of Isostatic Deviation 

10.13.1 Gulf of Bothnia 

The area of the Gulf of Bothnia is a typical example of the rebound 

phenomenon. During the last Pleistocene ice age, the North European area was 

under ice load. On melting of the ice, the region was relieved of its load and, in 

order to restore isostatic balance, began to rise ever since. At the northern shores 

of the Gulf of Bothnia, the present rate of uplift is 1 cm per year (Fig. 10-9).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10-9 Post glacial uplift of the Gulf of Bothnia region. The contours represent 

uplift in meters from 6800 B.C.  to present time. (Redrawn from Holmes, 1975, p59)  
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The isostatic anomaly over this area is found to be of negative value 

reaching about -50 mgal at its centre. As it is explained above, this represents the 

case of overcompensation which implies that the present size of the root is larger 

than it is inferred from the elevation of the surface topography. The subsidence 

caused by the ice-load was accompanied by lateral movement of the sub-crustal 

material and the ice removal seems to have occurred too fast to an extent 

whereby the readjustment process was not keeping pace with the ice removal 

rate. 
 

10.13.2 Rift Valleys 

Rift valleys or grabens are tectonic features formed as result of a faulting 

process creating a long strip of a subsided block bounded by normal faults. The 

Great Rift Valley of East Africa, the Rhine Graben, the Mid-Atlantic Ridge Rift 

are typical examples of such large-scale tectonic structures. These are thought to 

be formed as a result of regional uplift associated with tension and rifting, a 

process similar to that taking place with uplifted formations pushed by a growing 

salt dome. The end result is a graben in which the inner sinking block is forming 

a “root-like” mass-deficiency structure. This model furnishes adequate 

interpretation for the negative isostatic anomalies normally found over these rift 

valleys. 

The African Rift Valley extends from the Zambezi northwards passing 

through the Red Sea and the Dead Sea depressions. Across certain parts of this 

Rift Valley it is found that the isostatic anomaly is of large negative values over 

the central zone and small positive values over the surrounding rims. This 

indicates that a density-deficient “root structure” must exist underneath the Rift 

Valley at those locations (Fig. 10-10).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10-10 Profiles across four of the African rift valleys with the corresponding gravity 

isostatic anomalies determined by E. C. Bullard (1936). Redrawn from Fig. 773 in 

Holmes, 1975. p. 1062. 
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10.13.3 The Red Sea 

Due to ocean floor spreading and crustal separation phenomenon, Arabia is 

moving away from Africa forming an intervening gap which is the Red Sea 

structural depression. The Red Sea is considered to be an extension to the 

African Rift Valley since it is a graben-form depression bounded by normal 

faults. However it differs from the African Rift in that it shows positive gravity 

anomaly over its central part. From seismic data it was inferred that the Sialic 

layer is missing in the zone bellow the Red Sea and it is replaced by intrusive 

basic rocks which are of a higher density. Thus the presence of such high-density 

rocks near the surface instead of the lighter Sialic rocks explains the positive 

isostatic anomaly over the trough of the Red Sea (Fig. 10-11).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

10.13.4 Ocean Deeps and Island Arcs     

Large negative isostatic anomalies (less than –200 mgal) are found over a 

belt that parallels approximately the ocean deeps near the East Indies, 

Philippines Islands and Aleutian Islands. On both sides of the belts of the large 

negative anomalies, positive isostatic anomalies are usually observed, especially 

Fig. 10-11 Profile across the Red Sea (near its southern end) with the corresponding 

gravity isostatic anomaly determined by R. W. Girdler (1958), redrawn from Fig. 787 in 

Holmes, 1975. p. 1080. 
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on the side facing towards the continents. The amplitudes of these positive 

anomalies are usually smaller than those of the negative anomaly belts. 

 

10.13.5 Cyprus and Hawaii Islands 

Large positive isostatic anomalies are observed over some restricted zones 

of the earth crust. Examples of such zones are Cyprus (exceeding +150 mgal), 

portions of Hawaii (exceeding +100 mgal) and Armenia (exceeding +100 mgal). 

These represent cases of under compensation. This means that these structures 

have no roots which are evidently supported by the rigidity of the crust rather 

than being supported by the buoyancy effect. 

 

 



Chapter 11 

GRAVITY EXPLORATION RECENT 
DEVELOPMENTS 
 

 
 
 

Throughout the 20th century, the classical geophysical exploration methods, 

including the gravity method, were extensively applied in the search for mineral 

and hydrocarbon deposits. Geophysical research has led to great progress in 

instrument technology as well as in the other basic exploration elements. 

Satellite radar-based positioning technique, computer hardware, and software 

systems and all other modern supporting technologies (based principally on 

modern digital electronics) have collectively contributed to the development of 

the gravity method. 

The main developments that occurred in the gravity exploration method 

were in the airborne gravity, borehole gravity, and in geodetic studies. It is 

useful to know that satellite-borne instruments cannot measure acceleration 

while the satellite is in free fall. Satellite-based gravity information can be 

indirectly inferred from the satellite altitude and its orbit shape.  

Here-below, we shall give brief presentation on the basic fundamentals of 

the airborne gravity and borehole gravity since these have their principal 

application in the field of petroleum and mineral deposits. 

 

11.1. Airborne Gravity 

Airborne gravity measurements (or aerogravity, as it is referred to 

sometimes) are concerned with measuring the acceleration due to the Earth’s 

force of gravitational attraction by instruments carried by a moving airplane or 

helicopter.  In essence, the aerogravity observation includes measurements of the 

acceleration vector, location, velocity vector, and altitude of the aircraft.  

The main difficulties met with in airborne gravity surveys are introduced by 

the too large and rapid changes in the measured gravity values caused by the 

aircraft complex motion. During flight, this may experience a side-way, head-

way, and latitude changes. These effects are similar to those found in ship-borne 
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gravimetry, but with much slower changes. Compensation of these changes is 

usually done in the processing stage. 

Processing of the observational data involves compensation for aircraft 

vertical motion, gravimeter platform velocity changes, Eotvos effect, free-air, 

and latitude corrections. Residual random noise can be removed by applying a 

low-pass filter. The processed data are usually downward continued to the 

ground surface or to the sea level for interpolation and/or comparison with 

conventionally recorded gravity data (Dobrin and Savit, 1988, p 556). 

 

11.1.1 Aerogravity Basic Principles  

In the stationary type of environment as in the case of land gravity 

measurements, the measured gravity would be the effective acceleration vector 

sensed at that position. In the airborne gravity, the sensed gravity is a 

combination of the Earth gravitational acceleration component, in the direction 

of the measuring gravimeter-axis, and all acceleration components created from 

the aircraft motion. In the geophysical literature, these two types of acceleration 

are usually termed the gravitational and the kinematic accelerations respectively. 

Due to the aircraft complex motion, two problems need to be solved. These are 

the gravimeter stabilization and isolation of the gravitational acceleration from 

that created by the kinematic motion.   

Schwartz and Li, (1997) and Wei, (1999) classified airborne gravimetry in 

general into three types. These are: 

- Scalar gravimetry 

- Vector gravimetry 

- Gravity gradiometry 

 

 (i) Scalar gravimetry 

In scalar gravimetry, only the magnitude of the gravity vector is determined. 

One way to accomplished this is with the use of the so-called Strapdown Inertial 

Navigation System (SINS). This approach, called the Strapdown INS Scalar 

Gravimetry (SISG) System, is concerned with  measuring only the vertical 

component of the gravity vector. 

Another approach is based on the use of a triad of three orthogonal 

accelerometers from which the gravity magnitude is determined by subtracting 

the acceleration vector due to the aircraft motion from the measured acceleration 
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vector. This system is normally referred to as the Rotation Invariant Scalar 

Gravimetry (RISG) system.   

 

(ii) Vector gravimetry 

This type of gravimetry is concerned with determination of the full gravity 

vector. This is accomplished by using inertial platform system, with which each 

of the three components; one vertical and two horizontal components (Jekeli and 

Kwon, 1999). 

 

 (iii) Gravity gradiometry 

An arrangement of two gravimeters aligned on a common vertical axis can 

give the vertical gradient of the gravitational field at the measurement location. 

In airborne gravity gradiometry, the first derivative of the acceleration vertical 

component (= the second derivative of the gravity potential) is measured. 

Gravity-gradient measurement is normally evaluated in Eotvos units, where one 

Eotvos is equal to 10-6 mgal/cm. 

Gradiometry measuring instruments in common use (like the Falcon gravity 

gradiometer) proved to be of higher accuracy and resolution compared with the 

scalar and vector gravimetry, gradiometers. In an actual airborne gravity survey, 

the flight was conducted along a grid of orthogonal flight-tracks spaced at about 

2-5 km apart at an altitude of about (200-500) m above the mean terrain level 

(Jekeli, 1993). 

A comprehensive overview of gravity gradiometry is found in Bell et al, 

(1997). 

 

11.1.2 Aerogravity Main Objectives  

Airborne gravity surveying aims at two main objectives. These are the 

geodetic and geologic exploration studies of the Earth surface, based on the 

airborne gravity measurements. 
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(i) Geodesy (local geod exploration) 

The geoid (defined to be the equipotential surface of the gravity field) can be 

represented by the mean sea level. Airborne gravity data have proved to give 

highly accurate information on the local geodetic changes. 

 

(i) Geology (regional geologic exploration) 

In geophysical studies, airborne gravity is extensively applied in mapping 

geological changes especially on the large-scale (regional) changes. The gravity 

maps obtained from aerogravity surveys are compared and tied up with existing 

conventional gravity data and interpreted to determine subsurface geological 

structures. Structural and stratigraphic anomalies, with mineral and hydrocarbon 

contents, can be explored by this fast, accurate, and cost effective technique. 

 

11.1.3  Historical Development of Aerogravity  

The first reported test of airborne gravity measurements was conducted in 

the mid-1950s (Lundberg, 1957), where a system based on gravity gradiometry 

was applied. Due to lack of the accurate navigation system and insufficient 

technical control available then to avoid gravity interferences, the airborne 

gravity, as an exploration tool, did not develop until the 1980s, when the 

Differential Global Positioning System (GPS) was introduced. Since then, the 

technique has experienced continuous improvements in both measurement-

accuracy and spatial resolution. 

The major problems met with in the early experiments of airborne gravity 

surveying were the aircraft navigation control, and lack of a gravimeter capable 

of accurate measurements of acceleration changes in a dynamic environment. 

However it is found that better accuracy is obtainable when using large aircraft 

smoothly flying at high altitudes. 

The tests carried out in the early 1960s were based on gravimeters installed 

in fixed-wing aircrafts. In those experiments, the gravimeters used were 

modified sea-gravimeters (developed by LaCoste and Romberg for ship-borne 

gravity measurments) that use gimbal suspension to handle horizontal 

acceleration changes. The first successful gravity measurement from a helicopter 

was performed in 1965. In the following year, a more accurate helicopter-borne 

test (of about 3 milligal) has been successfully performed. This test has led to the 

development of a complete helicopter-borne gravity measuring system (HGMS). 

The main advantages of a helicopter over a fixed-wing aircraft are lower altitude 

and slower flight which are increase the spatial resolution. 
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The break-through in the development of the aerogravity as an effective 

exploration tool came at the end of the 1980s when the DGPS technology was 

introduced. This highly advanced navigation system helped in accurate 

measurement location and in developing gravimeter stabilization systems to 

overcome those turbulences affecting the gravity measurements during flight. 

One of the first large-scale airborne gravity surveys, with the application of these 

developments, was conducted over Greenland in 1991 and 1992 by joint 

cooperation between U.S Naval Research Laboratory and the Danish National 

Survey. Other examples of such surveys were the airborne gravity surveys of 

Switzerland in 1992 and over the West Antartic ice sheet in (1991-1997). After 

these pioneering works many airborne gravity surveys were conducted with 

reported accuracies of 1.5-2.0 milligal at 5-6 km spatial resolution. Examples of 

these surveys are done over Malaysia (2002-2003), Mongolia (2004-2005), 

Ethiopia (2006-2007), and Taiwan (2007). The information cited above is based 

on the more detailed account presented by Alberts (2009, p7). 

 

11.1.4 Advantages and Limitations of Airborne Gravimetry 

The main advantages of airborne gravity exploration are the following: 
(i) Fast exploration tool, as it is possible to cover thousands of line kilometers in few 

weeks survey-time. It is, therefore, suited for reconnaissance (regional 

coverage) surveying rather than for detailed local investigations. 

(ii) Capable of surveying inaccessible areas and territories which are hard to survey 

with the conventional measuring tools, such as rugged mountains and iceberg 

covered areas. 

(iii) Providing uniform coverage of the gravity field measurements, where the 

reading locations are independent of the terrain nature of the survey area. 

(iv) Cost-effective exploration-technique in surveying large areas, due to being fast, 

efficient, and using fully automated field procedure. 

 

Corresponding to these advantages, airborne gravimeter surveys suffer from 

a number of limitations. The principal limitation of the method is its need for 

highly sophisticated equipment carried by a fixed-wing airplane or a helicopter. 

This feature made the use of the technique restricted to a few number of 

specialized exploration companies. The second important limitation is its 

relatively low spatial-resolution that makes the technique more suited for large-

scale (regional) surveying rather than for detailed (local) geophysical 

investigations.  
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11.1.5 Accuracy and Spatial Resolution of Airborne Gravimetry 

In the geophysical literature, it is stated that acceleration changes due to 

aircraft flight disturbances may reach as much as 0.1G (= 100 000 mgal). An 

airborne gravimeter is required to measure gravity to better than one milligal. In 

this noisy environment, a sufficiently accurate value for the vertical acceleration 

is extracted by the appropriate measures taken in the design of the measuring 

system.  

In the early 1980s, measurement accuracy attained in airborne gravity was 

estimated to be of 5 milligals (Brozena, 1984). With the more modern airborne 

gravimetry systems, an accuracy of 1-2 milligals, at a 2-km spatial resolution has 

been attained (Alberts, 2009). Airborne gravity measurements are of accuracy 

and spatial resolution which are insufficient for detailed mineral exploration. 

This limitation is believed to stay unresolved hindrance for being applied as a 

detailed mineral exploration tool (van Kann, 2004). 

The attainable resolution depends upon flight speed, survey-line grid, 

elevation, sampling period, and type of the applied filter. Airborne gravity 

surveys seem to be controversial; some geophysicists believe that for regional- 

type surveys, airborne gravity can yield usable results. Others have reported that 

inconsistent results were obtained when airborne and ground surveys were 

compared after allowance was made for elevation differences. The magnitude of 

this error was greater than the internal precision of most airborne gravity systems 

(Dobrin and Savit, 1988, p 557). 

 

11.1.6 Processing of the Aerogravity Data  

In essence, processing of the aerogravity measurement data is to remove all 

non-gravitational acceleration components from the total gravimeter 

measurement acceleration. Due to the complex aircraft motion, the computation 

of the non-gravitational components becomes much more complicated than that 

involved in the case of the traditional ground gravity surveying data. Especially 

designed software systems are applied in the data processing. 

 

The Main Corrections 

The main corrections done for the gravimeter reading involve subtraction of 

acceleration components due to aircraft motion, Eotvos correction, tilt correction 

due to non-level position of the measuring system, and the normal gravity. For 

the free-air gravity, a term, which is a function of the elevation and geoid 
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undulation, is added. Finally, the Bouguer anomaly is computed based on the 

available density model. 

Over the survey time, a number of airborne base readings are normally made 

to construct the gravimeter drift function which is used for the drift correction. A 

land-based gravimeter, tied to absolute gravity stations, is used to establish the 

reference gravity values. Certain measures are applied to determine the 

calibration factor of the measuring accelerometers. 

  

Data Filtering 

Airborne gravity measurements are made in very dynamic operation 

conditions in which high-frequency, large-energy levels are introduced in the 

readings. Typically, noise-to-signal ratios of 1000 or more can be observed 

(Schwartz and Li, 1997). In such an environment, resolving of the gravity signal 

forms a serious problem in aerogravity surveying. To extract the useful gravity 

signal from such a high-noise record, a low-pass filter is usually applied. 

Low-pass filtering forms an important feature of the airborne gravity 

processing. The main purpose of the filtering is to remove the high frequency 

gravity noise which is usually present in the gravity measured record, obscuring 

the gravity anomaly signal.  Low-pass filtering forms an important feature of the 

airborne gravity processing. The main purpose of the filtering is to remove the 

high frequency gravity noise which is usually present in the gravity measured 

record, obscuring the gravity anomaly signal.   

Modern gravity-data interpretation work is mostly using inverse and forward 

modeling techniques (Jacobi and Smilde, 2009) 

 

Airborne Gravity versus Land Gravity 

Comparison of the airborne gravity data with the traditional land-surface 

gravity data can give an evaluation measure to aerogravity as a geophysical 

exploration tool. In general, it is found that a small constant offset-shift is 

existing between the airborne gravity map and the corresponding ground gravity 

map. For comparison purposes, this offset is removed by a bulk-shift of the 

airborne data. 

There are two ways to tie airborne- and ground- gravity maps. The simple 

way is to add the average of the gravity differences found at the grid points to 

the airborne gravity map, and the other way is to upward continue of the ground 
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gravity data to the aircraft mean flying level. By subtraction, the mean difference 

between the two types of survey can be calculated. 

To assess the accuracy of airborne gravity surveying, a comparative study is 

made on an area for which airborne gravity and ground gravity data are available 

(Elieff, 2003). In this study, a comparison was made between the airborne 

gravity data with the upward continued ground data, giving a standard deviation 

of 0.62 mgal (for the differences between air gravity and ground readings) at 

flight level, in addition to a constant offset-shift of 1.4 mgal between the air- and 

ground-data. 

At present, airborne gravity surveying is claimed to achieve accuracies of 

about 0.5 mgal with spatial resolution of 2-4 km, and is compared favorably with 

most ground gravity data sets. The following figure (published by Fugro on its 

web site) shows the correspondence between the results of  traditional ground 

gravimetry (A), the airborne conventional gravimetry (B), and the airborne 

gravity gradiometry (C).  

 

 

 
 
 

 

 

It is clear from this example that the airborne gravity map is in remarkable 

coincidence with the ground-gravity map. The almost perfectly matching results 

of the airborne gravity map, compared with that obtained from the standard 

ground gravity surveying, strongly support the reliability and compatibility of 

the modern aerogravity. Further, the gradiometry map shows, as expected, 

A 
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Airborne Gravimeter 
4 km Line spacing  
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improved resolution-power compared with the airborne and conventional ground 

gravity measurements. 

 

11.2. Borehole Gravity 

Borehole gravity is concerned with measuring the gravity variation down a 

drilled hole. The measurement instrument is a specially designed gravity logging 

sonde (the borehole gravity meter, BHGM) which can measure the gravity 

variation with depth. The BHGM technology, considered to be part of the micro-

gravity exploration, was developed by the well known LaCoste & Romberg Inc. 

into an efficient and reliable geophysical exploration tool capable of detecting 

changes in density and porosity of geological formations in addition to reservoir 

monitoring and mapping of structural anomalies such as salt domes and reef 

deposits. 

As early as 1950s, scientific papers were published in the geophysical 

literature dealing with the borehole gravity in detail, as for example, (Smith, 

1950) and (LaFehr, 1983). 

 

11.2.1 Principles of Borehole Gravity 

The geophysical principles of this method are based on the direct 

relationship connecting the gravity changes with the density contrast. The 

measured change in density is a function of the vertical gradient of gravity. Thus, 

a density measurement requires measuring gravity at two different depths. Since 

the expected changes in gravity are very small, the borehole gravity sensor is 

required to be very sensitive measuring instruments. Accuracy of the produced 

density values depends on the accuracy of the corresponding gravity and depth 

readings. 

 

11.2.2 Operational Considerations 

The measuring meter is effectively, a very sensitive spring balance which 

measures changes in gravitational force acting on the mass attached to its spring. 

Since the sensing mass is constant, the changes are expressing the gravity 

(acceleration) changes. 

Logging operation is similar to the procedure followed in well velocity 

surveying. The measurement tool is stopped at the planned depth levels at which 

BHGM readings are taken. The borehole must not be deviating from the vertical 
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by more than that defined for the measuring system, and the meter, which is well 

thermostat-controlled, needs to be leveled at each measurement station.  

The vertical resolution obtained depends on the discrete depth intervals 

adopted for the measurements. 

 

11.2.3 Advantages and Disadvantages of Borehole Gravity 

The borehole gravity logging is a passive exploration tool, in the sense that 

it does not require any artificial energy source. Further, the produced gravity log 

can be directly interpreted in terms of density variation with depth. This logging 

tool has the merit of being unaffected by the borehole conditions, such as poor 

cementing, washout, and fluid invasion. The logging process can be carried out 

in case, as well as in open holes. 

 With an available gamma-ray log, porosity and nature of pore fluid (gas or 

liquid), in addition to density variations can be determined. 

 

11.2.4 Scope of Applications 

There are two main fields of application of the BHGM logging work. These 

are the close-up sensing of formation rock density (down-hole density logging) 

and the remote-sensing of neighboring geological structures. Borehole gravity 

logs can give useful information on density and porosity variation as well as 

detection of types of bore fluids and hence contribute to reservoir evaluation 

studies. Coupled with gamma-ray logging data the technique can give important 

information on the anomalous geological structures found in the vicinity of the 

logged section. In this context, structures of sufficiently high density contrast, 

like salt domes and reef deposits, can be detected by BHGM. 

 

 

 



Chapter 12 

CASE HISTORY OF GRAVITY SURVEYS 
 
 

 

 

In this chapter, we shall present two actual surveys carried out by the authors. 

The first one was carried out by Dr. Hamid N. Al-Sadi in the County of Devonshire, 

England (Al-Sadi, 1967) and other survey was carried out jointly by Zuhair. D. Al-

Shaikh and Ezzadin N. Baban in Iraqi territories (Z.D. Al-Shaikh and E.N. Baban, 

1991). 

 
(A) GRAVITY SURVEY IN ENGLAND BY AL-SADI, 1967 

12.1. Location of the Survey Area 

The survey area (8 x 12 mile2) is located in the extreme North-Western corner 

of Devonshire in England (Fig. 12-1). The latitude 51° 05' N and the longitude 3° 55' 

W form the southern and eastern boundaries of the area respectively. The ground 

elevation lies in the range 900-1000 feet above sea level. There is a gradual decrease 

in elevation level in the western and South Western direction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12-1 Location map of the survey (North Devon, England) 
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The survey was carried out in the summer of 1965 using a Warden gravimeter. 

There was no need for conducting a topographic survey for the survey-area since a 

large number of station points (bench marks and spot heights of known elevation) 

exist at an adequate coverage-density throughout the area. 

 

12.2. Geological Structure of the Survey Area 

All of the outcropping rocks are of Devonian age, with the oldest rock of the 

sequence is found on the north coast of the area. The Lower Devonian consists of 

coarse arenaceous rocks with shaly or slaty beds. The Middle Devonian consists of 

slates within which there are two 30-foot bands of limestone. The Upper Devonian 

is dominantly made up of slates and sandstones that include the outcropping 

Pickwell Down Sandstone member which was mainly investigated in this case-

study. 

The succession of the Devonian rocks forms parallel tracts striking at bearing of 

about 285° with an average dip of 35° due south. The axial planes of folds are 

parallel to that of the synclinorium of which North Devon is part-of. The fold axes 

are generally pitching 15° - 30° due west. 

 

12.3. The Field-Work 

12.3.1 Measurement Instrument  

A Worden gravimeter was used in the survey. The instrument is housed in an 

evacuated chamber (thermo flask) with a built-in temperature-compensating device. 

Instrument reading is made by observing an illuminated index-fiber through a built-

in microscope which is provided with a hair-line eyepiece for viewing the scale 

changes.  

 

12.3.2 Instrument Calibration  

The gravimeter, used in this survey, has been previously calibrated by the 

instrument makers. The determined calibration factor was (0.4240) mgals/scale 

division. The instrument was re-calibrated before the start of the survey by taking 

readings at two points at which the gravity value is accurately known. From dividing 

the difference in gravity value by the difference in the corresponding dial-readings, 

the scale factor is obtained. The scale factor 0.4240 mgal/s.d was confirmed by this 

experiment and thus was adopted in the reduction of readings of this survey.  
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12.3.3 Instrument Drift  

As a first step of the survey, the curve of the drift characteristics of the 

gravimeter is constructed. As it was explained, the instrumental drift is due mainly 

to three causes. These are the slow plastic deformation, thermal expansion in the 

instrument components due to the Earth tidal effect. To determine the drift 

characteristics, the gravimeter was set up at a location and read at frequent intervals 

for several hours. The mean drift rate was determined from the established drift-

curve and found to be within the range of 0.03-0.04 mgal/hour. These figures serve 

as guide for giving an idea about the degree of stability of the instrument used in the 

survey. However, the drift has been accurately computed alongside the survey 

readings and allowed for gravity value determination be done in the data reduction 

stage. The established drift curve has shown that the drift is linear over 2-3 hours 

time-span. This information was made use of in conducting the survey as explained 

below. 

 

12.3.4 Instrument Set-Up  

The slightly concaved tray, on which the gravimeter rests, is placed on the spot 

where a reading is to be taken. The bull’s eye spirit level found at the center of the 

tray indicates the leveling state of the tray which is firmly placed on the ground. The 

gravimeter is then placed on the tray and accurately leveled at each station reading. 

 

12.3.5 Instrument Reading  

To read the gravimeter, after being properly set-up over its base-tray, the light 

of the scale dial is switched on and the beam is brought to the null-position using the 

torsion screw of the instrument. Before taking the reading, the instrument levels are 

checked and the index beam is viewed again to make sure that it is still in the null 

position. The reading is then taken to a precision of 0.1 scale-division by reading the 

verniere scale of the gravimeter after restoration of the illuminated index-fiber to the 

null position.. 

 

12.4. The Base-Station Network 

The second step in conducting the gravity survey, after calibration and drift 

determination of the gravimeter, is the establishment of the base-station network. A 

base station is defined to be that point which is accurately located within the survey-

area, at which the gravity value is precisely known. The base-station serves two 

purposes; first it is used as a reference point for computing gravity value at other 



174 

station-points from reading gravity differences. The second purpose is the 
determination of drift changes which take place during the survey-work. This is 

done by taking repeated gravity-readings at the base station at different time-

intervals. 

 

12.4.1 Base-Station Network Establishment  

In this survey area, eight well-spaced base-stations (B1, B2, …, B8) were 

established (Fig. 12-2). 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The main base station (B1) at which the absolute gravity value is already known 

(= 981192.35 mgal) is located near Barnstaple town, whose coordinates are 51° 04' 

12'' N for its latitude and 04° 04' 24''W for its longitude. 
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Starting with the reference base station (B1), the second base station (B2) and 

the rest of the eight base stations are established by taking readings in the following 

sequence:  

 

 
 

The actual readings (taken on the 26th of June, 1965) are shown in the following 

table: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From the drift curve (shown in the first column of this table), the drift value is 

determined and the true gravity difference between B1 and B2 is found and then 

after being converted into milligals (using the conversion factor 0.424 mgal/s.d) the 

gravity value of B2 is determined. Now B2 can be used as a new reference base 

station in computing another base station such as B3. This procedure is repeated to 

establish the rest of the base stations (B4, B5, B6, B7, and B8). 

 

12.4.2 Closing-Error Distribution 

In this survey, the base stations (B1, B2, B3, B4, B5, B6, B7, & B8) were 

connected by four loops (compartments). The four closing errors in these loops were 

determined and found to be -0.11, +0.62, -0.48 and -0.63 scale-division. These 
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closing errors are distributed among the eight base stations. A simple method of 

closing-error distribution (explained here-below) is done by assigning an error-

variable for each polygon-side and then solving simultaneous equations. The 

procedure can be explained as follows:  

In this survey, we have four compartments (A, B, C, & D). For each free side a 

variable was assigned. The variable (a) was assigned for the free sides of the first 

polygon (A), b for the second polygon (B) and so on. For the common sides, assign 

differences, (a-b) for the side which is common between polygons A & B, (b-c) for 

the side which is common between polygons B & C, and so on as shown in (Fig. 12-

3).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

An equation of each polygon is obtained from equating its closing error to the 

algebraic sum of the variables of its sides. The following four simultaneous 

equations are then obtained: 

    4a - b-d = - 0.11 

Fig. 12-3  Base-station network (forming four compartments) with the 

computed closing-error values (a, b, c, d). Arrow direction indicates relative 

increase in gravity value between base stations. 
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4b - a- c - d = + 0.62 
        4c - b = - 0.48 

      3d – a - b = - 0.63 
 

Solution of this set of equations gives: 

 
a = - 0.0657 
b = + 0.0592 
c = - 0.1052 
d = - 0.2122 

 

The correction in milligals per each side is thus determined by using the 

conversion factor (0.424 mgal/s.d.), and reversing the algebraic sign of each of the 

correction values. Fixing the main base-station (B1) at its given value (981192.35 

mgal), the adjusted values of the other seven base-stations are finally determined. 

The whole process is summarized in the following table:    

 

Polygon 
side 

Original 
difference 

(s.d) 

Correction 
(s.d) 

Corrected 
difference 

(s.d) 

Corrected 
difference 

(mgal) 

Corrected  
Base-Station 
gravity (mgal) 

B1-B2 +22.82 +0.066 +22.89 +9.71 B1= 981192.35 

B2-B3 -55.55 +0.066 -55.48 -23.52 B2= 981202.06 

B3-B4 +0.68 +0.125 +0.81 +0.34 B3= 981178.54 

B4-B1 +31.94 -0.147 +31.79 +13.48 B4= 981178.88 

B3-B6 -52.20 -0.059 -52.26 -22.16 B5= 981172.27 

B6-B5 +37.63 -0.164 +37.47 +15.89 B6= 981156.38 

B5-B4 +15.87 -0.271 +15.60 +6.61 B7= 981146.61 

B5-B1 +47.18 +0.212 +47.39 +20.09 B8= 981162.03 

B6-B7 -23.15 +0.105 -23.05 -9.77  

B7-B8 +36.25 +0.105 +36.36 +15.42  

B8-B5 +24.05 +0.105 +24.16 +10.24  

 

The last column of the above table contains the adjusted gravity values of the 

base stations used in this survey. The main base station B1 (having gravity value of 

981192.35 milligal) was made as reference point to which the other gravity values 

(B2, B3,…,B8) were corrected. As shown in the above table, the corrected 

differences read over each of the lines connecting the base-stations were used in the 

correction process.. This process (called base-station tie-up) furnished eight base 

stations that are well distributed throughout the area.  
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To further clarify the correction process let us explain the procedure followed in 

calculating the closing error in the first compartment (compartment-A) formed by 

the loop (B1 B2 B3 B4). This is done as follows: 

Let the difference between station B1 and station B2 be diff.1, between B2 and 

B3 to be diff.2, between B3 and B4 to be diff.3, between B4 and B1 to be diff.4. The 

closing error is then found by summing diff.1 + diff.2 + diff.3 + diff.4 algebraically. 

In the same way, the closing errors in the rest of the compartments  are found and 

converted into gravity units using the conversion factor (0.424 mgal/s.d).  

The closing errors in the four compartments were found to be -0.047, +0.263, -

0.204, and -0.267 mgals, giving a mean absolute closing error of 0.195 mgal, and 

standard deviation of ±0.174 mgals. These residual errors were distributed over the 

gravity values of the base stations. Fixing the main (reference) base station (B1) at 

the value of 981192.35 mgal, the adjusted values of the other seven bases became as 

follows:  

    

 

 

12.5. Station Reading 

Once the base-station network is established, a systematic field procedure is 

followed to execute gravity measurements at all station-points in the survey area. 

The daily work is normally started and ended by taking a reading at a reference 

base-station. Both of the gravity reading and its reading-time are documented. This 

process (reading and documenting the gravimeter reading and the time of the 

reading) is repeated at each of the survey station-point. Readings at the base station 

are repeated at about two-hour intervals throughout the working day.  

Station-points of this survey are not uniformly distributed in the survey area. 

There was no need to establish a uniform station-grid, since an adequate number of 

station-points of known x, y, z -coordinates was available over the whole area. The 

Base-  
Station 

Location  
name 

Latitude 
(N) 

Longitude 
(W) 

Adjusted 
gravity (mgal) 

B1 Barnstaple 51°  04'  12'' 04°  04'  24'' 981  192.35 

B2 Braunton 51°  06'  10'' 04°  09'  25'' 981  202.06 

B3 West Down 51°  09'  34'' 04°  07'  24'' 981  178.53 

B4 Marwood 51°  07'  05'' 04°  04'  39'' 981  178.87 

B5 Shirwell 51°  07'  04'' 04°  00'  16'' 981  172.25 

B6 Berry Down 51°  10'  29'' 04°  02'  37'' 981  156.37 

B7 Wistlandpound 51°  09'  50'' 03°  56'  19'' 981  146.60 

B8 Bratton Fleming 51°  07'  11'' 03°  56'  35'' 981  162.01 
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following table shows a sample data-sheet in which the data set was read and 

documented on the 23rd of June, 1965. 

 

Station 
seq. no 

Longitude 
(W) 

Latitude 
(N) 

Elevation 
(Feet) 

Time  
(h-min) 

Reading 
(s.d) 

Drift 
(s.d) 

Gravity Reading 
(drift-corrected) 
  (s.d.)     (mgal) 

B4 04°  04'  39'' 51°  07'  05'' 384.5 14  - 22 503.4 0.0 503.4 178.87 

7 04°  02'  11'' 51°  08'  54'' 826.6 14  - 57 448.4 0.0 448.4 155.55 

8 04°  01'  23'' 51°  08'  53'' 852.0 15  - 12 444.5 0.0 444.5 153.90 

9 04°  01'  46'' 51°  08'  52'' 849.7 15  - 26 444.4 0.0 444.4 153.85 

10 04°  01'  30'' 51°  08'  51'' 804.0 15  - 40 449.5 0.0 449.5 156.02 

11 04°  01'  28'' 51°  08'  41'' 810.0 15  - 54 448.8 0.0 448.8 155.72 

12 04°  01'  26'' 51°  08'  35'' 821.5 16  - 04 446.7 0.0 446.7 154.83 

13 04°  01'  14'' 51°  08'  26'' 756.4 16  - 14 452.7 0.0 452.7 157.37 

B4 04°  04'  39'' 51°  07'  05'' 384.5 16  - 37 503.4 0.0 503.4 178.87 

14 04°  01'  07'' 51°  08'  09'' 723.2 17  - 14 453.9 0.0 453.9 157.88 

15 04°  01'  07'' 51°  08'  01'' 717.0 17  - 31 453.5 0.0 453.5 157.71 

16 04°  01'  03'' 51°  07'  52'' 663.0 17  - 40 460.0 -0.1 459.9 160.43 

17 04°  00'  57'' 51°  07'  40'' 577.5 17  - 55 471.8 -0.1 471.7 165.43 

B4 04°  04'  39'' 51°  07'  05'' 384.5 18  - 27 503.5 -0.1 503.4 178.87 

 

The first column in this table contains the sequence number, and the following 

three columns contain the x y z coordinates of the station points. Columns 5 and 6 

are assigned for time and gravimeter-readings respectively. The rest of the columns 

contain the data-reduction results, where the last column shows the final drift-

corrected gravity value in milligals. Conversion to milligals is achieved through 

multiplication by the scaling factor (0.4240 mgal/s.d). 

 

12.6. Reduction of Field-Data 

Data reduction (Data processing) of field data involves a sequence of 

corrections applied to reduce the field-data to the final Bouguer gravity values. To 

achieve this objective, the following corrections were applied: 

 

(i)  Drift Application and Reading Conversion 

The instrumental drift is determined from the repeated readings made at the 

concerned base-station over time-spans which, in this survey, were about two hours. 

Readings, after being corrected for drift, were then converted into milligals using the 

instrument calibration factor which was 0.424 milligals/scale division.  
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(ii)  Latitude Correction  

This correction removes the gravity change (systematic increase in equator-to-

poles direction) due to flattening and rotation of the Earth. In this survey, the 

correction is done by measuring the latitude of each observation point to the nearest 

second and the corresponding theoretical gravity value (as given by the International 

Formula) was read, and then subtracted from the observed gravity for each station of 

the survey. It is be noted that the whole survey area is located between latitudes 51° 

05` 44`` N and 51° 12` 32`` N. 

 

(iii)  Combined Elevation Correction 

This includes the combined effect for the Free-Air and Bouguer corrections. 

The formula for the combined elevation correction (CEC) is given by: 

          CEC = 0.09406 - 0.01276 * density    milligal/foot 

In this survey, the density value used for the Bouguer correction was 2.7 gm/cc. 

With this value, the combined correction was found to be of 0.05961 milligals per 

foot of station elevation. 

 

(iv)  Terrain Correction  

Both hills above a station-level and valleys below have positive terrain-

corrections on the gravity value at that station. The correction per each station was 

calculated by a computer program (Bott, 1959). The input data consists of location-

coordinates, elevations of station-points, mean density and relief information of the 

area. The input data for the correction included areas that extend beyond limits of 

the survey area in order to insure adequate correction for those stations located on 

the outer fringes. Thus, the survey area was subdivided into (1km x 1km) squares 

forming a total of 768 squares). In addition, a surrounding 8 km-wide strip was 

included in the computation and was subdivided into (4km x 4km) squares (total of 

72) and a second strip immediately beyond this of about the same width was also 

divided into 8km x 8km squares. The average elevation of the topography in each 

square (1x1, 4x4, and 8x8 dimensions) was manually estimated. The value (2.70 

gm/cc) was used for the mean rock density.  

By carrying these corrections, the gravimeter reading at each station in the 

survey area was reduced to give the final Bouguer gravity anomaly in milligals. 

These values are then posted on the base map of the area and finally presented as a 

contour map (Fig. 12-4) ready for the next phase of the project which is the 

interpretation process. 
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 Fig. 12-4 Bouguer anomaly map of North Devon-England, drawn at one-milligal 

contour intervals (Al-Sadi, 1967). 

 

 
 
 
 
 

 

12.7. Interpretation 

Interpretation of the final Bouguer gravity map forms the ultimate aim of any 

gravity survey project. In short, this phase of the survey gives the geological 

structural model which is nearest to the realistic picture of the subsurface geology of 

the area. The input data to the interpretation process is the Bouguer anomaly map 

(shown in Fig 12-4) which was drawn at one-milligal intervals. 

There are two types of approach for interpretation. These are qualitative and 

quantitative approaches. After a descriptive approach and trying to associate the 

main apparent changes with the available geological knowledge of the area, a more 

deterministic approach is followed. This includes computations of the regional and 

residual gravity then gravity-to-geology translation using model-analysis technique. 
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(i)  Qualitative Approach 

A visual inspection of this map revealed that the anomalies show a fairly 

constant strike, which follows the trend of the Devonian outcrop very closely. In 

addition, there exists a central region of anomaly disturbance. In general, the gravity 

values are noted to be falling in a northerly direction. The Bouguer contour map (Fig 

12-4) reveals a remarkable resemblance between the gravity picture and that of the 

known geological structure of the area. In particular there is a close coincidence 

between the central gravity-low and the outcrop of one of the Upper-Devonian 

sedimentary members (the Pickwell Down Sandstone). 

 

(ii)  Quantitative Approach 

Based on the general contour appearance and on the known geological structure 

of the area, the gravity map was considered as being reflecting a two-dimensional 

geological model consisting of parallel rock-layers dipping in a southerly direction. 

For this reason, interpretation was based on drawing gravity-profiles perpendicular 

to strike of the geological layers. To simplify the quantitative interpretation, regional 

and residual anomalies are determined for the derived profiles rather than for the 

whole contour map. 

 

The Regional Gravity Anomaly 

 Due to the simplicity of the Bouguer gravity map, a manual method was used 

in establishing the regional anomaly. Based on the analysis of ten profiles taken at 

right angles to the general trend, it was found that the mean regional gradient is 1.2 

± 0.20 mgals per mile. With this gradient the regional gravity is generally decreasing 

in a northerly direction which was found to be in close agreement with the 

assumption of thickening of the Carboniferous sediments which is separated from 

the outcropping Devonian rocks by an assumed thrust zone. For a density contrast of 

-0.15 gm/cc, these sediments must reach a thickness of about 3 miles at the northern 

coast of Devon to account for the 30-milligal gravity change over the area.  

 

The Residual Gravity Anomaly 

The separated residual-anomaly profiles were subjected to model analysis. 

These analyses have shown that they are caused by the dipping belt of sandstone 

(the Pickwell Down Sandstone) and that the dip angle of the formation decreases 

with depth. At a depth of about two miles, the formation becomes nearly horizontal. 

Alternatively, it may terminate against an assumed thrust plane underlying the whole 

Devonian beds. A typical profile is shown in Fig. 12-5.  
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(B) GRAVITY SURVEY IN IRAQ  BY Z.D. Al-Shaikh and E.N. 
Baban, 1991, J.Sci.Nat. 1(1A), 28-34. 
 

 
 

POSSIBLE TRIASSIC FOLDING BELOW ABU RASSAIN, THE 

WESTERN DESERT, IRAQ 

 

12.8. INTRODUCTION  

The area of study is situated in the west of Iraq, a few kilometers to the west of 

the town of  Hatra (Fig.12.6). It is a flat lying country except for sporadic hills such 

as Kurat Tayarat.The area as a whole has a regional inclination towards the east and 

northeast.  

The surface geology is made up of Middle Miocene Lower Fars Formation 

(cycles of clay, marl, limestone and gypsum) followed by the Upper Miocene Upper 

Fars (sandstone, siltstone and clays). The well Khleisia-1(Kh-1) (350 20' northing, 

41044' easting) gives the thickness of the L. Fars to be 550m while that of the U.Fars 

200m. The deeper geological information is obtained from Kh-1 which penetrates 

the succession to the Ordovician at a depth of3731.7m. Two other deep wells are 

also used, namely Tel Hajar-I to the north (360 06' northing 41039' easting), which 

penetrates to the Upper Triassic, and Ana-2 to the south (34° 22' northing, 41028' 

easting), which penetrates to the Lower Jurassic. Correlating the various successions 

between these wells shows that the Silurian is missing at Kh-1 due to uplift and 

erosion during the late Ordovician and early Devonian. The succession from the 

Upper Carboniferous to the Middle Triassic is also missing due probably to the 

Hercynian orogeny. Kh-1 and Ana-2 show, furthermore, that the succession from the 

Middle Jurassic up to the Upper Cretaceous is missing because of the uplifting 

during the Kimmerian orogeny. The Alpine movement has also caused the removal 

of the Palaeocene to the Middle Eocene in the area.  

 Tectonically, the area lies within the Hatra Uplift which belongs to the near 

platform flank of the foredeep (Ditmar,1971). It has been subjected to successive 

uplifting during different periods of its geological evolution. On the surface, only 

few local anticlines exist among which Tayarat anticline is prominent in the 

southwest of the area. It forms elongated hills stretching in a NE-SW direction for 

some 20 kms. 

Previously, the area was covered by gravity survey (Sayyab et. al., 1968) and by 

aeromagnetic survey in 1978. Mohammed (1981) has studied a detailed seismic 

reflection survey over the area and produced a topographical map of the basement 

and an isopach map of the Lower Paleozoic rocks.  
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                Fig. 12.6 Location and Geological maps of the area. 
 
 

In the following analysis, gravity features of local nature observed on the 

gravity map will be concentrated upon. 

  

12.9. PROCEDURE  

The Bouguer anomaly map was prepared by Iraqi Petroleum Company (IPC) 

with 1:200000 scale and a contour interval of one milligal is used (Fig. 2). It is 

dominated by a large oval positive anomaly occurring in the middle of the area. It 

has a sharp northern gradient with the well Kh-1lying in the middle of it. The 

southern and eastern gradients are gentler. Its westerly extensions believed to run to 

considerable distance into the Syrian territory Superimposed on this main anomaly 

are sharp anomalies of various shapes and dimensions. One important anomaly of 

these is the elongated one which extends from the town of Hatra to the southwest for 

a considerable distance. Other local disturbances can also be seen.  

To separate out local anomalies from the regional ones, smoothing procedure is 

used. The smoothing procedure is carried out by profiles. Two sets of profiles east-

west and north-south) are taken on the map of Fig. 2. Smoothing regional field is 

assumed for each profile. The intersection points serve as control over the regional 

field taken. Using this procedure the smooth regional map of Fig. 3 is produced. It 

shows the oval gravity "high" in the middle having a sharp gradient (reaching 0.6 

rngal/km) toward the north. It has a maximum amplitude of 20 mgal and a half-
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width of 47 km. Subtracting the regional field of Fig. 3 from the observed field of 

Fig. 2, the residual map is produced, Fig. 4. 

 

12.10.  INTERPRETATION  

Fig. 4 shows a number of local anomalies of which the anomaly (I), referred to 

here as Abu Rassain anomaly, is the most prominent. It is a positive, elongated 

anomaly lying within the Khleisia graben (Ditmar, 1971). It stretches for more than 

60 km in a NE-SW direction. It has maximum amplitude of 3 mgal and an average" 

half-width of 11 km. Ditmar's evidence for the graben is apparently the linear 

irregularities of the contours (Fig. 12-7) which stretch from Hatra southwestwards. 

However, no deep origin (e.g. within basement) for this linearity is observed on the 

seismic reflection records (Mohammed, 1981).  

 

       Fig. 12-7 Bouguer anomaly map of the area. 

 

To the northeast of Abu Rassain anomaly occurs another large, three-

dimensional one (III) referred to here as Abu Jurd anomaly. It is positive with 

maximum amplitude of 2.4mgal and an average half-width of 13 km. Other local 

anomalies such as anomaly (IV) in the south and anomaly II near the town of Hatra 

are also apparent. Only Abu Rassian and Abu Jurd anomalies are, however, 

considered here for further interpretation. 
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                Fig. 12-8 Regional anomaly map of the area. 

 

To locate the source of these anomalies, a density contrast within the succession 

of the wells referred to above is Kh-1 well which shows that an unconformity 

surface exists on top of the Upper Triassic, so that the succession involving rocks 

from the Middle Jurassic up to the Middle Cretaceous is missing. It is possible that 

even the Lower Jurassic may be missing below the positive anomalies as the well 

Kh-1 occurs only on the side of the anomaly and not at its culmination (see Fig. 12-

7). No information is available regarding direct and detailed density measurements 

of the rocks involved in the western desert. However, Ditmar (1971) gave the 

average density of the systems of the geological column in the western desert as 

follows:  

System 
Average density 
(gm.cm-3) 

Middle & Lower Miocene  2.64 

Palaeogene - Middle 
Cretaceous  

2.46 

Lower Cretaceous  2.61 

Jurassic-Upper Triassic  2.71 

Middle Triassic-Cambrian  2.62 

If this table is considered for a density boundary, it can be seen that such a 

boundary occurs between the Jurassic and the Cretaceous. A value of the density 

contrast of 0.18 gm.cm-3 seems to exist between the Jurassic and the lower 

succession on one side and the upper succession on the other. This contrast is similar 

to that used by Mohammed (1981) to interpret the local anomalies in the 
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southwestern desert and is near enough the value used by Abass et. al., (1982) who 

used 0.2 gm.cm-3 to interpret anomalies in the Hit-Shthatha area, the western desert. 

Furthermore, referring to Fig.12-7 and noting the position of Kh-1 which shows only 

a small thickness of L. Jurassic, it is believed that these rocks may further be 

removed on top of the structure below the anomaly maximum. Therefore, a contrast 

of 0.18 gm.cm-3 is considered representative for the difference between the Triassic 

(Kurra Chine Formation) and the later succession. 

 

 

 

               Fig. 12-9 Residual anomaly map of the area 

 

A. Abu Rassain anomaly 

Figs. 12-9, 12-10 and 12-11 show the Bouguer anomaly profiles. Slightly 

inclined regional gradient towards the northwest is chosen. Obviously, this 

inclination is not taken in account by the smoothing procedure of the observed 

contours. This slight "extra" regional effect is subtracted from the observed curve to 

yield a simple "high" over the uplift. The best cross-section of the uplift was found 

by trial and error using a computer program to compute the theoretical values of 

gravity of two-dimensional models 

The suggested model is an elongated uplift whose topmost rocks are made up of 

Upper Triassic. The uplift is not symmetrical with the northern limb having greater 

inclination. It is possible that the northern limb is faulted hence becoming steeper. 

The top surface of the model along the profiles AA, BB, CC and DD occurs at 
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depths 580,550, 420 and 440 m successively. These figures are calculated using a 

density contrast of 0.18 gm.cm-3 as referred to earlier. An error of -0.01 gm.cm-3 in 

the contrast will result in an error in depth of -50m. Fig.7 shows a subsurface 

contour map on top of the upper Triassic as deduced from the above considerations. 

 

 
                               Fig. 12.10 Modeling of the Abu Rassain anomaly 

 

B.  Abu Jurd Anomaly 

It is a three-dimensional positive anomaly, lies to the northeast of well Kh.-1 

(Fig. 4). It has maximum amplitude of 2.4 mgal. It is believed that, according to the 

same reasoning, its origin lies in the uplifting of the unconformity above the Triassic 

rocks. To obtain the geological structure causing the anomaly two profiles (FF, EE) 

running normal to each other are considered (Fig. 12-9). A similar procedure as that 

used for Abu Rassain anomaly which is followed by the computer program is used 

for calculating the gravitation effect of a three-dimensional model (Fig. 12-13). The 

suggested solution is nearly-circular uplift of the Upper Triassic which is slightly a 

symmetrical with its top occurring at a depth of 530m. A subsurface structure 

contour map of the uplift is shown in Fig. 12-14. 
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      Fig. 12-11 Modelling of the Abu Rassain                Fig. 12-12 Modelling of the Abu Jurd      

                       anomaly                                                                     anomaly 

   

 
 

               Fig. 12-13 Structural contour map on top of the Up. Traissic  

                                 (Abu Rassain anomaly). 
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                              Fig. 12-14 Structural contour map on top of the Up. Traissic  

                                               (Abu Jurd anomaly). 
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