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Abstract 

 

 Spatial regression methods allow us account for dependence 

between observation, which often arise when observation are collected from 

points or regions located in space. Labor for spatial dependency or spatial 

parameter in analysis phenomenon is going to find important information 

instead of time because that we must find mathematical models which in of 

them spatial parameter and it is spatial regression models which show effect 

of explanatory variables on response variable where we have spatial effect 

for the neighbor places according the role for weigh matrix.In this thesis 

study the effect of explanatory variables air temperature,wind speed and 

relative humidity to the response variable Atmospheric Pressure. 

The data were collected from 27 places or stations  in Kurdistan 

region(Sulaimaniyah,Erbil,and Dhouk). Spatial Regression Models used to 

find the effect of neighbor place. Spatial Auto regressive Model (SAR) and 

Spatial Error Model (SEM) which two models have a spatial parameter and 

also use General Linear Model (GLM) .The different criteria or measures 

like ( Adjusted determinations of coefficient (R
2
adj) , root mean square error 

(RMSE) , mean absolute percentage error (MAPE) , Akaike Information 

Criterion(AICc)  used for finding the  best fit model and for detecting  the 

spatial dependency use Moran’s test and also Lagrange tests used to select 

the best spatial model (SAR and SEM) with three weight matrixes 

rook,bishop and queen. 

The important result in the practical part shows that the spatial regression 

model is better than the general linear model. The parameters of the  Spatial 

Autoregressive Model(SAR) for queen and rook matrices is significant and 



 
IV 

while the converting data into fuzzy and applying the models GLM,SAR and 

SEM and comparison between them depending on some criteria or measures 

like R
2
adj,,RMSE,MAPE,AICC the result show that the data converted to 

fuzzy is better than the data with unfuzzy and spatial regression with fuzzy 

data is better than the spatial regression with unfuzzy and the best 

appropriate  model is SAR depending on rook weight matrix. Finally the 

most appropriate model was obtained from the analysis in the practical part 

as follows: 

SAR Model depending on the queen matrix with  raw data: 

                ̂ = 6.4880 +0.1096  A.T+2.0739R.H+0.0240 λ 

SAR Model depending on the rook matrix with fuzzy data : 

 ̂ = 7.8610-0.3162W.S+0.0632 A.T+1.6837 R.H- 0.0019 λ 
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Chapter One 

  Introduction and the Literature Review 

1-1 Introduction 

Model selection is the task of selecting a statistical model from a 

set of potential model given data. In its most basic forms, this is one of the 

fundamental tasks of scientific inquiry. 

An important component of any linear modeling problem consists of 

determining an appropriate size and Form for the design matrix. Improper 

specification may substantially impact both estimators of the model 

parameters and predictors of the response variable: under specification 

may lead to results which are severely biased term which is called the 

under-fitting model, whereas over specification may lead to results with 

unnecessarily high variability term which is called the over-fitting model. 

In statistical modeling, one of the main objectives is to select a suitable 

model from a candidate class to characterize the underlying data. Model 

selection criteria provide a useful tool in this regard. A selection criterion 

assesses whether a fitted model offers an optimal balance between 

goodness of fit and parsimony. Ideally, a criterion will identify candidate 

models which are either too simplistic to accommodate the data or 

unnecessarily complex. 

Several model selection criteria have been used in computer vision, and 

many other have found popularity in the statistics literature. Due to their 

better accuracy in estimating the correct model, such as multiple linear 

regression and spatial regression model  which F-statistic have become 
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widely used. more recently, information theoretic model selection criteria 

have gained increasing popularity[18].  

Regression analysis is a statistical tool for the implementing of 

relationships between variables. Usually, the implementer seeks to the 

causal effect of one variable upon another—the effect of a price increase 

upon demand, for example, or the effect of changes in the money supply 

upon the inflation rate. To explore such issues, the implementer assembles 

data on the underlying variables of interest and employs regression to 

estimate the quantitative effect of the causal variables upon the variable 

that they influence. The investigator also typically assesses the “statistical 

significance” of the estimated relationships, that is, the degree of 

confidence that the true relationship is close to the estimated relationship. 

And you have two types of regression the first one is Simple linear 

regression it is a statistical method that allows us to abstract and study 

relationships between two continuous (quantitative) variables and it is 

defined to be yi=B0+B1x1+ei and The second is multiple linear regression 

it attempts to model the relationship between two or more explanatory 

variables and a response variable by fitting a linear equation to observe 

data. Every value of the independent variable x is associated with a value 

of the dependent variable y. The population regression line for p 

explanatory variables( x1, x2, ... , xp) is defined to be yi=B 0 + B1x1 + B2x2 + 

... + Bpxp+ei. This line describes how the mean response y changes with 

the explanatory variables. The observed values for y vary about their 

means y and are assumed to have the same standard deviation. The fitted 

values b0, b1, ..., bp estimate the parameters  0, 1, ..., p  of the population 

regression line [22] 
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   Spatial regression is methods capture spatial dependency, bypass statistical 

problems such as unsettled parameters and unreliable significance tests, as 

well as providing information on spatial relationships among the variables 

involved depending on the specific technique, spatial dependency can enter 

the regression model as relationships between the independent variables 

and the dependent, between the dependent variables and a spatial lag of 

itself, or in the error terms. Geographically weighted regression (GWR) is a 

local version of spatial regression that generates parameters disaggregated 

by the spatial units of analysis. This allows assessment of the spatial 

heterogeneity in the estimated relationships between the independent and 

dependent variables. and the history of spatial analysis  is late 1950s and 

early 1960s stopped for  the late 1960s and early 1970s. Not usually 

mentioned in the geographic literature is that the seeds planted in the 

quantitative revolution produced a steady produce of contributions that has 

now evolved into a vibrant field, both inside and outside the discipline of 

geography.[9] [24] 

  Spatial autoregressive model Some time is called mixed model  or mixed 

regressive model because connect between ordinary least square and  spatial 

lag model in a dependent variable.Insert depend variable that is spatialy 

deferent   as one of explanatory variable (WY). [ 25] 

 In spatial error model the important term is independency of error term and in           

this model errors correlated spatially and the aim of this model is correct 

spatial  error[8][15] 

Spatial regression methods allow us to account for dependence between 

observations, which often arises when observations are collected from points 

or regions located in space. We might also have individual form 
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establishment point locations indicate by latitude-longitude coordinates that 

can be found by applying geo-coding software to the postal address. It is 

commonly observed that sample data collected for regions or points in space 

are not independent, but rather spatially dependent, which means that 

observations from one location tend to exhibit values similar to those from 

near by locations[26]
 

Fuzzy logic starts with and builds on a set of user-supplied human language 

rules. The fuzzy systems convert these rules to their mathematical 

equivalents. This simplifies the job of the system designer and the computer, 

and results in much more accurate representations of the way systems 

behave in the real world . 

The membership function of a fuzzy set is a generalization of the indicator 

function in classical sets. In fuzzy logic, it represents the degree of truth as 

an extension of valuation. Degrees of truth are often confused 

with probabilities. For any set  X, a membership function on X is any 

function from X  to the real unit interval [0,1] . [27] 

 

 

https://en.wikipedia.org/wiki/Fuzzy_set
https://en.wikipedia.org/wiki/Indicator_function
https://en.wikipedia.org/wiki/Indicator_function
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Fuzzy_logic
https://en.wikipedia.org/wiki/Degree_of_truth
https://en.wikipedia.org/wiki/Valuation_(logic)
https://en.wikipedia.org/wiki/Probability
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1-2 Literature Review 

Spatial regression is measured by spatial dependency , which is 

a property of data that arises whenever there is a spatial pattern in the values 

located on a map, as opposed to a random pattern that indicates no spatial 

autocorrelation. To measure the spatial pattern (spatial association and 

spatial dependency), some standard global and local spatial statistics have 

been developed. These include Moran's I, Geary's C and Getis statistics. 

Besides spatial dependence in the data, there can be spatial heterogeneity. 

This means that the underlying process being studied may vary 

systematically over space. This creates problems for regression and other 

econometric methods that do not accommodate spatial variation in the 

relationship. [28] 

In  1998  Christian A. L. Hilber study Neighborhood Externality 

Risk and The Homeownership Status of Properties 

In contrast to corporate and institutional investors, single owner-occupiers 

cannot adequately diversify housing investment risk. Consequently, 

homeownership should be relatively less likely in places with higher housing 

investment risk. Using the American Housing Survey, it is documented that 

neighborhood externality risk, a major component of housing investment 

risk, substantially reduces the probability that a housing unit is owner-

occupied, even when controlling for housing type and numerous location 

and household specific characteristics. The effects are quantitatively 

meaningful and change-in-change estimates suggest that the effects are 

causal
[30]
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In 1999, Gustav Visser  study  Researcher positionality and 

political-temporal contingency in a post apartheid research 

environment  

Since the mid 1990s South Africa has experienced a series of fundamental 

changes in its local government system. This paper suggests that these 

institutional changes underpin a "new" research environment, the dynamics 

of which have not been commented upon in academic methodological 

debate. Working in the context of both an established and an emerging 

geographical debate, the paper gives further voice to the impact of 

researcher positionality and political-temporal contingency in the research of 

local government elites
[40]

 

In 2001, Smirnov, O and Anselin, L studies the Fast maximum 

likelihood estimation of very large spatial autoregressive models a 

characteristic polynomial approach Computational Statistics & 

Data Analysis.  

 This paper states that the maximization of the log-likelihood function used 

in spatial autoregressive models is computationally intensive and requires 

significant amounts of memory. This becomes problematic during analysis 

when very large spatial data sets are used. This papers contribution is a new 

method for evaluating the Jacobian term based on the characteristic 

polynomial of the spatial weights matrix W. Comparisons made between 

Cholesky factorization and this characteristic polynomial algorithm showed 

pronounced improvement when large data sets (n>50000) were examined. In 

addition, the Cholesky algorithm failed when large data set were used due to 

large memory requirements. Clearly the characteristic polynomial algorithm 
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proposed by this paper is preferred when using large data sets. This 

algorithm also includes a tuning variable to vary the accuracy of the result. 

However, increasing the accuracy of the result also increased computation 

times. The proposed solution is O (n) solution for regular lattices and O 

(nlogn) for irregular lattices 
[29]

 

In 2001, Badi H.Baltagi study the Companion to Theoretical 

Econometrics   

This new attention to specifying, estimating, and testing for the presence of 

spatial interaction in the mainstream of applied and theoretical econometrics 

can be attributed to two major factors. One is a growing interest within 

theoretical economics in models that move towards an explicit accounting 

for the interaction of an economic agent with other heterogeneous agents in 

the system. These new theoretical frameworks of “interacting agents” model 

strategic interaction, social norms, neighborhood effects, copy-catting, and 

other peer group effects, and raise interesting questions about how the 

individual interactions can lead to emerge collective behavior and aggregate 

patterns. Models used to estimate such phenomena require the specification 

of how the magnitude of a variable of interest (say crime) at a given location 

(say a census tract) is determined by the values of the same variable at other 

locations in the system (such as neighboring census tracts).
[30] 
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In 2002 Luc Anselin study the   Under the Hood Issues in the 

Specification and Interpretation of Spatial Regression Models 

This paper reviews a number of conceptual issues pertaining to the 

implementation of an explicit “spatial” perspective in applied econometrics. 

It provides an overview of the motivation for including spatial effects in 

regression models, both from a theory-driven as well as from a data-driven 

perspective. Considerable attention is paid to the inferential framework 

necessary to carry out estimation and testing and the different assumptions, 

constraints and implications embedded in the various specifications 

available in the literature. The review combines insights from the traditional 

spatial econometrics literature as well as from geostatistics, biostatistics and 

medical image analysis. [31] 

In 2002 A.S. Fotheringham, C. Brunsdon, M.E. Charlton and 

Wiley Chichester   studies the Geographically Weighted 

Regression the Analysis of Spatially Varying Relationships.  

 Authors mentioned few techniques that incorporate local spatial 

relationships in to the regression framework, which is very popular and well 

known in the statistics community. Authors showed that hedonic price 

model to capture price variation in London housing market are incorrect. 

This is because of non-stationary property exhibited by the dataset. One 

method attempts to calibrate the geographic model based on established 

boundaries[29] 
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In 2003 Edmonton, Alberta study the Spatial Analysis and Timber 

Potential in the Deh Cho Territory 

The Deh Cho Land Use Planning Committee is responsible for developing a 

land use plan for the Deh Cho territory, pursuant to the Deh Cho Interim 

Measures Agreement. To assist in the completion of this effort, the 

Committee commissioned PACTeam Canada and associates to prepare of a 

“Spatial Analysis and Literature Review of Timber  Potential of the Deh 

Cho Territory” that will contribute to the information base to be used in the 

development of a land use plan for the area. In the context of this project, 

timber refers to trees of sawlog size only.[32] 

In 2003 Paaß, G. and Kindermann,J  studies the  Bayesian 

regression mixtures of experts for georeferenced data. 

This paper identifies the need for politicians, planners and social scientist to 

be provided the tools to clarify and manipulate spatial distributions to predict 

future developments. Bayesian statistics offers a way to estimate values of a 

variable at locations that are not sampled. The paper tries to address a case 

where Tobler’s law is not applicable [29] 

In 2004 Baris M. Kazar, Shashi Shekhar, David J. Lilja, Ranga 

Raju Vatsavai and R. Kelley Pace studies the Comparing Exact 

and Approximate Spatial Auto-regression Model Solutions for 

Spatial Data Analysis.GIScience. 

Applications that use spatial auto-regression (SAR) for data mining are 

working with ever increasing sizes of geo-spatial databases. The explosive 
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growth in databases coupled with the demand for exact solutions for 

estimating SAR parameters are both computationally expensive and memory 

intensive. This paper presents two candidate approximate-semi-sparse 

solutions of the SAR model based on the Taylor series expansion and 

Chebyshev polynomials. When accuracy of these new approximation 

algorithms and an exact algorithm were compared, both provided accurate 

results. However, the approximation algorithms outperformed the exact 

algorithm in both terms of computation and memory usage. It was also noted 

that the exact algorithm was unable to solve any problem with over 10K 

observation points. They performed experiments on satellite imagery. 

Authors suggested exploring better model based on this approach to get 

better prediction[29] 

In 2004  dani gameman study the Multivariate spatial regression 

models  

This paper describes the inference procedures required to perform Bayesian 

inference to some multivariate econometric models. These models have a 

spatial component built into commonly used multivariate models. In 

particular, the common component models are addressed and extended to 

accommodate for spatial dependence. Inference procedures are based on a 

variety of simulation-based schemes designed to obtain samples from the 

posterior distribution of model parameters. They are also used to provide a 

basis to forecast new observation [33]
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In 2005 Nathaniel B. Guttman study the Spatial Regression  as a 

technique for assessing  the quality  of  tempera true data 

The SRT methodology is being incorporated into the NCDC processing 

system. Because the SRT software developed by the HPRCC could not be  

“plugged and played” in the NCDC system, new code had to be written. In 

order to insure that the code was written as intended, parallel testing is being 

conducted on January through May, 2005 data for the lower 48 states. The 

NCDC version of the software is being run at the NCDC, and the HPRCC 

version is being run at the HPRCC, and results are being compared for one-

to one correspondence [35] 

In 2005 Arthur Getis study the screening for spatial dependence in 

regression analysis  

A technique of analysis is presented that is designed to circumvent the 

problem of finding was y to estimate parameters of spatially stochastic 

independent variables. It is based on (1) a type of second-order analysis that 

describes the spatial association among weighed observations, and (2) a 

screening procedure that removes most of the spatial dependence in the 

dependent variable. The approach is illustrated by a study of the incidence of 

certain crimes in 49 districts of Columbus, Ohio. It is concluded that spatial 

just a position of observations plays a large role in regression analyses that 

are based on spatial series[38]
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In 2006 Prasanna Man Shrestha study the Comparison of Ordinary 

Least Square Regression, Spatial Autoregression, and 

Geographically Weighted Regression for Modeling Forest 

Structural Attributes Using a Geographical Information System 

(GIS)/Remote Sensing (RS) Approach 

The performances of three modeling techniques: (i) ordinary least square 

(OLS) regression, (ii) spatial autoregression (SAR) and (iii) geographically 

weighed regression  (GWR) were compared for the task of predicting a key 

forest structural parameter crown closure – across a study area in west-

central Alberta using a series of spectral and topographic variables.[49] 

In 2006 Sohair F Higazi study the Application of Spatial 

Regression Models to Income Poverty Ratiosin Middle Delta 

Contiguous Counties in Egypt 

Regression analysis depends on several assumptions that have to be 

satisfied. A major assumption that is never satisfied when variables are from 

contiguous observations are the independence of error terms. Spatial 

analysis treated the violation of that assumption by two derived models that 

put contiguity of observations into consideration.[46]
 

In 2007 Maria Carbolic, Mirand Cuffaro, and Peter Nijkamp 

studies the uses spatial econometric methods to analyze the 

relationship in unemployment rates among different regions of the 

Italian labor market 
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 Determine a model that explains the spatial differences in unemployment 

rates among Italy’s provinces through the use of both equilibrium and 

disequilibrium variables. The authors classify equilibrium variables as those 

that coincide with the equilibrium explanation of the spatial distribution of 

unemployment rates‐ that workers migrate to areas with new jobs until 

personal utility is constant across all provinces, and high unemployment in a 

specific province is balanced by other positive attributes of that province. 

Demographic measures are perfect examples of equilibrium variables; 

Cracolici’s equilibrium variables seem to roughly correspond to Topa’s 

sorting variables[42]
 

In 2007 Raymond J.G.M. Florax and Peter Nijkamp  studies the 

Misspecification in Linear Spatial Regression Models 

 Spatial effects are endemic in models based on spatially referenced data. 

The increased awareness of the relevance of spatial interactions, spatial 

externalities and networking effects among actors, evoked the area of spatial 

econometrics. Spatial econometrics focuses on the specification and 

estimation of regression models explicitly incorporating such spatial effects. 

The multidimensionality of spatial effects calls for misspecification tests and 

estimators that are notably different from techniques designed for the 

analysis of time series. With that in mind, we introduce the notion of spatial 

effects, referring to both heterogeneity and interdependence of phenomena 

occurring in two dimensional space. Spatial autocorrelation or dependence 

can be detected by means of cross correlation statistics in univariate as well 

as multivariate data settings.[40] 
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In 2008 James p.lesage study the Spatial Regression-Based Model 

Specifications for Exogenous and Endogenous Spatial Interaction 

Studying relationships between environmental factors and infectious 

diseases is an important topic in public health research. The existing studies 

have been focused on temporal correlations among environmental risks and 

infectious disease outbreaks. In this paper, we advocate the importance of 

spatial data analysis in infectious disease-related environmental analysis. 

Using data from the Beijing CDC, we have conducted spatial regression 

analysis to study correlation between Measles occurrences and the following 

environmental factors population density and proximities to railways, roads, 

and water systems. We report some preliminary findings concerning 

significant spatial autocorrelation identified from our analysis[34] 

In 2009   Andhra Pradesh study the Spatial Regression Analysis 

Model for Temporal Data Mining in Estimation of House Hold 

Data Through Different States in India 

 In this work a model is going to be developed which helps in measuring 

household data distributed over a wide area. The model considers the 

assumption that the households data follows an ordered sequence. The house 

hold data at some states is considered from the census data. A grid point 

identifies each state. Each grid point is identified by a set of coefficients. 

These coefficients are represented in terms . Thus known house hold data 

from the census, a set of simultaneous equations will be developed by 

multivariate regression model. By solving these simultaneous equations, 

coefficients of the simultaneous equations will be calculated. These 
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coefficients will be used to generate household data for any years between 

known data and also for any future house hold data analysis.[39] 

In 2009 Luc Anselin study the Thirty Years of Spatial 

Econometrics  

In this paper, I give a personal view on the development of the field of 

spatial econometrics during the past thirty years. I argue that it has moved 

from the margins to the mainstream of applied econometrics and social 

science methodology. I distinguish three broad phases in the development, 

which I refer to as preconditions, take off  and maturity. For each of these 

phases I describe the main methodological focus and list major 

contributions. I conclude with some speculations about future directions .[43]
 

In 2010 Colin M.Beale study the Regression analysis of spatial 

data  

Many of the most interesting questions ecologists ask lead to analyses of 

spatial data  yet, perhaps confused by the large number of statistical models 

and fitting methods available, many ecologists seem to believe this is best 

left to specialists  Here, we describe the issues that need consideration when 

analyzing spatial data and illustrate these using simulation studies. Our 

comparative analysis involves using methods including generalized least 

squares, spatial filters, wavelet revised models, conditional autoregressive 

models and generalized additive mixed models to estimate regression 

coefficients from synthetic but realistic data sets, including some which 

violate standard regression assumptions[36]
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In 2010 Iowa. J Environ Manage study the GIS-based spatial 

regression and prediction of water quality in river networks 

Nonpoint source pollution is the leading cause of the U.S.'s water quality 

problems. One important component of nonpoint source pollution control is 

an understanding of what and how watershed-scale conditions influence 

ambient water quality. This paper investigated the use of spatial regression 

to evaluate the impacts of watershed characteristics on stream NO(3) NO(2)-

N concentration in the Cedar River Watershed, Iowa. An Arc Hydro geo 

database was constructed to organize various datasets on the watershed. 

Spatial regression models were developed to evaluate the impacts of 

watershed characteristics on stream NO(3)NO(2)-N concentration and 

predict NO(3)NO(2)-N concentration at unmonitored locations. Unlike the 

traditional ordinary least square (OLS) method, the spatial regression 

method incorporates the potential spatial correlation among the observations 

in its coefficient estimation[37] 

In 2011 Jørgen Lauridsen& Reinhold Kosfeld studies the Spurious 

spatial regression and heteroscedasticity 

A two-step Lagrange Multiplier test strategy has recently been suggested as 

a device to reveal spatial non stationary and spurious spatial regression. The 

present paper generalizes this procedure by incorporating control for 

unobserved heteroscedasticity. Using Monte Carlo simulation, the behavior 

of several relevant tests for nonstationarity and/or heteroscedasticity is 

investigated. The two-step Lagrange Multiplier test for spatial 

nonstationarity turns out to be robust towards heteroscedasticity. While 

http://www.ncbi.nlm.nih.gov/pubmed/20570037
http://www.tandfonline.com/author/Lauridsen%2C+J%C3%B8rgen
http://www.tandfonline.com/author/Kosfeld%2C+Reinhold
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several tests for heteroscedasticity prove inconclusive under certain 

circumstances, it is shown that a Lagrange Multiplier test for 

heteroscedasticity based on spatially differenced variables serves well as an 

indication of heteroscedasticity irrespective of stationarity status [44] 

In 2011 J. Paul Elhorst study the Spatial panel models  

This paper provides a survey of the existing literature on spatial panel data 

models. Both static and dynamic models will be considered. The paper also 

demonstrates that spatial econometric models that include lags of the 

dependent variable and of the independent variables in both space and time 

provide a useful tool to quantify the magnitude of direct and indirect effects, 

both in the short term and in long term[45]
 

In 2012 Alan Karl Swanson study the spatial regression methods  

capture prediction Uncertainty in species distribution model 

projections through time  

Species distribution models (SDMs) relate observed locations of a species to 

climate, And are used for projecting the fate of a species under climate 

change scenarios. To be useful in a decision-making context, the uncertainty 

associated with these projections must be known. However, the uncertainty 

associated with SDM projections is largely ignored; perhaps because many 

current methods have been shown to produce biased estimates.Failure to 

account for spatial autocorrelation of residual error explains much of this 

bias. Generalized linear mixed models (GLMM) have the ability to account 

for SAC through the inclusion of a spatially structured random intercept, 

interpreted to accountfor the effect of missing predictors[47] 
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In 2013 Emanuela Marrocu, Raffaele Paci  study the   Knowledge 

production function and proximities Evidence from spatial 

regression models for the European regions 

This paper aims at investigating the connections among regional innovation 

systems along several proximity dimensions. In particular, we assess if, and 

how much, the creation of new ideas in a certain region is the result of 

internal efforts as much as of knowledge flows coming from other regions 

which may be considered neighbors not only in the geographical space but 

also in the institutional, technological, social and organizational one. The 

analysis, based on spatial econometric techniques, is implemented for an 

ample dataset referring to 276 regions in 29 European countries (EU27 plus 

Norway, Switzerland) for the last decade.[48]
 

In 2013 Cellmer.R use Spatial autocorrelation to build regression 

models of transaction prices  

This paper presents the principles of studying global spatial autocorrelation 

in the land property market, as well as the possibilities of using these 

regularities for the construction of spatial regression models. Research work 

consisted primarily of testing the structure of the spatial weights matrix 

using different criteria and conducting diagnostic tests of two types of 

models: the spatial error model and the spatial lag model. The paper 

formulates the hypothesis that the application of spatial regression models 

greatly increases the accuracy of transaction price prediction while forming 

the basis for the creation of cartographic documents including, among 

others, maps of land value. 
[41] 
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In 2014 Omar Abdul Mwhsen Ali with student Sawsan Qasm Hadi  

studies the Spatial Regression Models Estimation for the poverty 

Rates In the districts of Iraq  

This paper shows spatial regression  model and model possessory error in an 

attempt to provide a general guide Shows the importance of spatial loading, 

with particular on the importance of using spatial regression models,which 

Each of which includes spatial reliability testing and that is whether or not  

find tests the Moran, and ignore this Reliability may lead to the loss of 

information important for empowerment reflected in end up on the strength 

of estimate Statistical index extracted, these models are the link between the 

usual regression models with change models[20] 

In 2014  James P. Lesage study the What regional scientists need 

to know about spatial Econometrics 

Regional scientists frequently work with regression relationships involving 

sample Data that is spatial in nature. For example, hedonic house-price 

regressions relate selling prices of houses located at points in space to 

characteristics of the homes as Well as neighborhood characteristics. 

Migration, commodity, and transportation flow models relate the size flows 

between origin and destination regions to the distance between origin and 

destination as well as characteristics of both origin and destination regions. 

Regional growth regressions relate growth rates of a region to past period 

own and nearby-region resource inputs used in production. Spatial data 

typically violates the assumption that each observation is independent of 

other observations made by ordinary regression methods. [22] 
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In 2014 Camille Ternynck study the Spatial regression estimation 

for functional data with spatial dependency 

We propose a nonparametric estimator of the regression function of a scalar 

spatial variable Yi given a functional variable Xi. The specificity of the 

proposed estimator is to depend on two kernels in order to control both the 

distance between observations and spatial locations. Mean square 

consistency of this estimator is obtained when the sample considered is an a-

mixing sequence. Lastly, numerical results are provided to illustrate the 

behavior of our estimator.[50] 

In 2015 James B. Pick , Avijit Sarkar, and Jessica Rosales studies a 

Spatial and Regression Analysis of Social Media in the United 

States Counties 

The locational distribution and socio-economic determinants of social media 

are analyzed for the United States counties in 2015. A theory of 

determinants is presented that is modified from the Spatially Aware 

Technology Utilization Model (SATUM). SocioEconomic factors including 

demography, economy, education, innovation, and social capital are posited 

to influence social media factors, while spatial analysis is conducted 

including exploratory analysis of geographic distribution and confirmatory 

screening for spatial randomness. The determinants are identified through 

OLS regression analysis. Findings for the nation indicate that the major 

determinants are demographic factors, service occupations, ethnicities, and 

urban location. Further subsample analysis is conducted for the U.S. 

metropolitan, metropolitan, and rural subsamples. The subsamples differ 
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most evidently in effects of ethnicities and construction occupations, and 

there are inverse effects of social capital at the metropolitan and rural levels. 

The regression findings are discussed in terms of the literature mostly of 

larger geographic units, and the few nationwide studies at the county level. 

The exploratory spatial analysis generally indicates similar national 

geographic patterns of use. Among the results is that although Twitter users 

are more heavily concentrated in southern California and have strong 

presence in the lower Mississippi region, users are highly concentrated in 

Colorado, Utah and adjacent Rocky Mountain States. Social media usage is 

the lowest in the Great Plains, lower Midwest, and South with the exceptions 

of Florida and the major southern cities such as Atlanta. The overall extent 

of spatial agglomeration is very high and is examined in detail for the nation 

and subsamples. The paper concludes by discussing the policy implications 

of the analysis at the county as well as the national levels[51] 

In 2016 Hamid Saed Nwr with master student Swhad Ali Shahid 

for master project studies  estimate spatial dynamic panel data 

model (SDPD) with fixed effects-stable state using the direct 

approach 

Although spatial dynamic panel data model sparked a lot of attention in the 

last decade, however, the econometric analysis of spatial models and 

dynamic panel data rare so far, with capabilities there are no available take 

into account the study the lagged of dynamic spatial model of panel data for 

the presence of one or more of the endogenous variables (dependent) as 

explanatory variables, with lagged in time along or both. The presence of the 
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dependent variable and endogenous lagged variables in a spatial lag model 

invalidate the use of known estimation methods such as(OLS) and (ML)[21] 

In 2016 Philomine Roseline T, N. Ganesan and Clarence J M 

Tauro studies   A Study of Applications of Fuzzy Logic in Various 

Domains of Agricultural Sciences 

Fuzzy logic (FL) has emerged as an important branch of Expert system 

which has proved to provide solution to real life problems that had remained 

unsolvable otherwise. It has found wide range of applications in diversified 

areas. In this paper, we study how the methods of fuzzy logic have been 

effectively used to solve a myriad of problems in the field of agricultural 

sciences. This paper reviews a few of the applications of fuzzy logic 

integrated with expert systems which had been applied in the field of 

agricultural sciences. This study could be considered as a part of the 

literature survey done for research work in future for developing expert 

system for a particular crop for a given region in our country. It can serve as 

the baseline for further work to be carried out in this domain.[65]
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1-3  Objective Of  This Thesis 

The objectives (aims) of this study are as follows: 

1. Identify the factors that affected to the atmospheric pressures (A.P) in   

    Kurdistan Region. 

2. Construct a special weight matrix W reflecting the data special   

     arrangement.      

3. Test for statistical dependence via a series of diagnostic measures. 

4. Use 2 and 3 to specify and estimate a special regression model (SAR and  

    SEM) for both  (raw and fuzzy)data. 

5. Compare  SAR and SEM to GLM by  (AIC, RMSE, MAPE, R
2
 adj) criteria       

for both  (raw and fuzzy ) data. 

1-4   Layout Of  This Thesis 

Chapter One: It comprises the following: introduction, literature review  

and the aim of the thesis. 

Chapter Two: This chapter is divided into two sections: 

Section One: Comprises the following linear regression model, some 

classical methods and alternative method for estimation, problems 

concerning linear model. 

Section Two: Details and background of spatial regression of those models 

that can be used in practiced points and fuzzy logic. 

Chapter Three: This chapter covers applying the data practically to 

traditional and modern statistical methods for estimating regression 
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parameters for fuzzy and un fuzzy data, and comparing the result there of 

between models to find the best model. Then information criterion is used to 

search among a collection of families for the fitted model which serves the 

best approximation to true model. 

Chapter Four: This is the last chapter of this thesis which deals with some 

conclusions and recommendations for future work. 



 

 

Chapter Two : Theoretical Part 

Section One: Classical Regression Model 

Section Two: Spatial Regression Model 
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`Chapter Two 

   Section One: Classical Regression Model  

2-1-1   Introduction 

The term "regression" was struck by Francis Galton in the nineteenth 

century to describe a biological phenomenon. The phenomenon was that the 

heights of descendants of tall ancestors tend to regress down towards a normal 

average (a phenomenon also known as regression toward the mean). For 

Galton, regression had only this biological meaning, but his work was later 

extended by ( Udny Yule and Karl Pearson )to a more general statistical 

context. In the work of Yule and Pearson, the joint distribution of the response 

and explanatory variables is assumed to be Gaussian. This assumption was 

weakened by R.A. Fisher in his works of 1922 and 1925. Fisher assumed that 

the conditional distribution of the response variable is Gaussian, but the joint 

distribution need not be. In this respect, Fisher's assumption is closer to Gauss's 

formulation of 1821. In the 1950s and 1960s, economists used 

electromechanical desk calculators to calculate regressions. Before 1970, it 

sometimes took up to 24 hours to receive the result from one regression
[4].

  

Regression analysis continue to be an area of active research. In recent decades, 

new methods have been developed for robust regression, regression involving 

correlated responses such as time series and growth curves, regression in which 

the predictor (independent variable) or response variables are curves, images, 

graphs, or other complex data objects, regression methods accommodating 

various types of missing data, nonparametric regression,Bayesian methods for 

regression, regression in which the predictor variables are measured with error, 

https://en.wikipedia.org/wiki/Francis_Galton
https://en.wikipedia.org/wiki/Regression_toward_the_mean
https://en.wikipedia.org/wiki/Udny_Yule
https://en.wikipedia.org/wiki/Karl_Pearson
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Ronald_A._Fisher
https://en.wikipedia.org/wiki/Robust_regression
https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Growth_curve_(statistics)
https://en.wikipedia.org/wiki/Nonparametric_regression
https://en.wikipedia.org/wiki/Bayesian_statistics


 Chapter  Two : Theoretical Part 
 

 
26 

regression with more predictor variables than observations, and causal 

inference with regression  and the regression analysis entered the social 

sciences in the 1870s with the pioneering work by Francis Galton. But “least 

squares” goes back at least to the early 1800s and the German mathematician 

Karl Gauss, who used the technique to predict astronomical phenomena. 

In statistical modeling, regression analysis is a statistical process for estimating 

the relationships among variables. It includes many techniques for modeling 

and analyzing several variables, when the focus is on the relationship between 

a dependent variable and one or more independent variables (or 'predictors'). 

More specifically, regression analysis helps one understand how the typical 

value of the dependent variable (or 'criterion variable') changes when any one 

of the independent variables is varied, while the other independent variables are 

held fixed. Most commonly, regression analysis estimates the conditional 

expectation of the dependent variable given the independent variables – that is, 

the average value of the dependent variable when the independent variables are 

fixed. Less commonly, the focus is on a quintile, or other location parameter of 

the conditional distribution of the dependent variable given the independent 

variables. In all cases, the estimation target is a function of the independent 

variables called the regression function. In regression analysis, it is also of 

interest to characterize the variation of the dependent variable around the 

regression function which can be described by a probability distribution
[11].

 

Regression  shows us how variation in one variable occurs with variation in 

another. What regression cannot show is causation; causation is only 

demonstrated analytically, through substantive theory. For example, a 

regression with clothes size as an independent variable and people size as a 

dependent variable would show a very high regression coefficient and highly 

https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Dependent_variable
https://en.wikipedia.org/wiki/Independent_variable
https://en.wikipedia.org/wiki/Conditional_expectation
https://en.wikipedia.org/wiki/Conditional_expectation
https://en.wikipedia.org/wiki/Average_value
https://en.wikipedia.org/wiki/Quantile
https://en.wikipedia.org/wiki/Location_parameter
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Probability_distribution
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significant parameter estimates, but we should not conclude that higher clothes 

size causes higher people size. All that the mathematics can tell us is whether or 

not they are correlated, and if so, by how much. It is important to recognize that 

regression analysis is fundamentally different from ascertaining the correlations 

among different variables .As deferent between regression and correlation the 

correlation determines the strength of the relationship between variables, while 

regression attempts to describe that relationship between these variables in 

more detail. 
[52]

 

Linear regression attempts to model the relationship between variables by 

fitting a linear equation to observed data. One variable is considered to be 

explanatory (independent) variable, and the other is considered to be response 

(dependent) variable. 

One of the most popular linear models is regression analysis. In simple 

regression analysis one assumes a relation of the type: 

                                       .,...,2,1        ,110 niXY iii     (2.1)                 

     where  

0  is the intercept, gives the value of Y when 0X  and 0i  . 

1  is the slope, relates a change in Y to change in X (holding   i constant) 

  i referred to as the error term or disturbance. 

 

 In simple regression, the observations are 2-D so they can be plotted. It is 

necessary to do the plotting first to see if any unusual features are present and 

to make sure that the data are roughly linear
[4] 

In general, the multiple regression models have the following general 

formulation: 
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                ,...,2,1      ,...22110 niXXXY ikikiii      (2.2)      

 where k ,...,, 10 unknown parameters and the explanatory variables are 

knXXX ,...,, 2111 which are fixed.  

We can thus write the regression model in the matrices form as:  

 

                             XY                                                          

Where 

        
),...,,( 21
 nYYYY  is an ( 1n ) vector of observation . 

X  is an ( kn )   matrix of explanatory variable. 

                   ),...,,( 10
 k  is an ( 1k ) vector of unknown parameters. 

        ),...,,( 21
 n     is an ( 1n ) vector of  random errors. 

Dealing with several explanatory variables simultaneously in a regression 

analysis is considerably more difficult than dealing with a single explanatory 

variable, for the following reasons:
[11] 

1- It is more difficult to choose the best model, since several reasonable 

candidates may exist. 

2- It is more difficult to visualize what the fitted model looks like (especially if 

there are more than two explanatory variables) since it is not possible to plot 

either the data or the fitted model directly in more than three dimensions. 

3- It is sometimes more difficult to interpret what the best fitting model means 

in real life terms.  

4- Computations are virtually impossible without access to a high speed 

computer and a reliable packaged computer program. 
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2-1-2 Review of Multiple Regressions 

2-1-2-1 Multiple Regression Model Assumptions 

These assumptions are summarized as follows:
 [11][9]

 

1. kkkk xxxXxXY    11011 },,|{   (linearity) 

2.  },,|{ 11 kk xXxXYSD    (constant variance) 

3. Distribution of Y for each subpopulation kk xXxX  ,,11   is normally 

distributed normality with mean(0)    and variance (σ
2
  )                           

4. Observations are independent. 

2-1-2-2Test for Multiple Regressions: 
[11]  

 

1-Test Hypothesis :
 
 

kkkk xxxXxXY    11011 },,|{ . 

Test of   null hypothesis         0: 10 H     

 vs. alternative hypothesis  H1: at least one of the k ,,1  does not equal to zero 

Uses t-statistic:/ /
)ˆ(

0ˆ
//

1

1





SE
t


 , reject for greater than |t|. Interpretation of test: “Is 

there evidence that 1X  is a useful predictor (improves predictions) once 

kXX ,,2  have been taken into account (held fixed)? or is 1X associated with 

kXX ,,2  once 1X has been taken into account? 

2-Overall usefulness of predictors: For multiple regression models(MRM) 

 kkkk xxxXxXY    11011 },,|{ , test whether any of the 

explanatory variables (predictors) are useful.   

Null hypothesis            0: 210  kH    
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vs. alternative hypothesis  :aH at least one of k ,,1  does not equal to          

zero. 

  Test (called overall F test) is carried out using Analysis of Variance table or         

(ANOVA)  table.  

                                               F   
    

   
 

 

where  MSR  is the (mean square regression) and MSE  is the  (mean square 

error). If the null hypothesis, H0, is true then the statistic F0 follows 

the F distribution with K degrees of freedom in the numerator and n-

(K+1)  degrees of freedom in the denominator. The nulhypothesis, H0, is 

rejected if the calculated statistic, F0, is such that
[53] 

F0> Fα,k,n-(k+1) 

  When we satisfy the assumptions, it means that we have used all of the                      

information available from the patterns in the data. When we violate an   

assumption, it usually means that there is a pattern to the data that we have not 

included in our model, and we could actually find a model that fits the data 

better
[54] 

 

3-  Coefficient of determination R
2
statistic :  

R
2
 is a measure of how good the predictions from the multiple regression model 

are compared to using the sample mean of Y, Y (i.e., use none of the predictors) 

to predict Y.  Similar interpretation to simple linear regression, R-squared 

statistic is the proportion of the variation in Y explained by the multiple 

regression models
[7]

 
[69] 
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2-1-2-3  Diagnostics and Model Building 

   The diagnostics for checking assumptions and remedies for violations of 

assumptions are summarized as follows:
 
 

1.  Test for linearity: Residual plots versus predicted values and versus 

explanatory variables kxx ,,1  . If the model is correct, there should be no 

pattern in these plots. A pattern in the mean of the residuals indicates a 

violation of linearity.  

2. Test for  constant variance: Residual plots versus predicted values and 

versus explanatory variables kxx ,,1  .A pattern in the spread of the residuals 

indicates non constant variance.   

3. Test for normality: Make plot or histogram of the residuals and see if it is 

approximately bell shaped (Jarque-Bera, Shapiro-Wilk W, Anderson-

Darling, Martinez-Iglewicz, Kolmogorov-Smirnov) 
[11].

 

2-1-3 Some Classical Parameter Estimation Method  

2-1-3-1 Ordinary Least Squares (OLS) 

     The parameters ),...,,( 10 k are estimated by minimizing the sum squares   

of  the  residuals:
 [56]
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   Divide equation(2.3)  by (2) we get     

- )4.2.......(0 XXYX

 

Divide equation (2.4) by(

 

     we get  

    

   
 

   

   
 

               

....(2.5)      )(ˆ 1 YXXX    

Where Y and X take the following column vector and matrix 

    

 

̂ 0 

. 

  ̂ = . 

̂ k 

 

One of the problems facing OLS is that it has a breakdown point which is a 

criteria showing a maximum degree of tolerance against contamination data in 

any sample, only 1/n ; that is a single point properly placed, can cause the OLS 

estimator to take virtually any value.
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2-1-3-2 Weighed Least Square (WLS) 

        The weighed least squares method of analysis is a modification of standard 

regression analysis procedures that is used when a regression model is to be fit 

to a set of data for which the assumptions of variance homogeneity do not hold. 

Weighed least squares analysis can be used when the variance of Y varies for 

different value of the independent variable, provided that these variances (i.e. 

2

i  for the ith observation on Y) are known or can be assumed to be of the form 

ii W/22   ,where weighs {wi} are known.  

  The specific weighed least squares solution for the straight line regression 

case i.e. 

                   X ii10  iY  

                    

 is given by the formulas 
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Where     iW  weight assigned to the ith observation 
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This procedure is known as weighted least squares and the resulting parameter 

estimates are called weighted least squares estimates. In ordinary least squares 

procedure a weight of 1    i W  is assigned to each
[56]

  

2-1-3-3 Maximum Likelihood Estimation (MLE) 

   The term maximum likelihood refers to a very general algorithm for 

obtaining estimators of population parameters; such estimators have excellent 

(large-sample) statistical properties. One major advantage of the ML method of 

estimating parameters is its applicability to a wide variety of situations. In 

particular, when a multiple linear regression model is fitted to normally 

distributed data, the least squares estimators of the regression coefficients are 

identical to the ML estimators.
 
 

To illustrate, suppose that we make the multiple regression model.  

             .   ,,...,2,1      , niXY   …….(2.6)       

Specifically, Let us assume that: 

        ),(N  ~ 2BXY         n 1,......,i                                                      

  Employing the expression for the distribution (density function) of a normally 

distributed random variable, from (2.6) find that the distribution of   iY is 

        

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1
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2
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
 XYXYf  … (2.7)                        

The likelihood function from (2.7) is 
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Taking the natural logarithm of this expression gives: 

)()(
2

1
)ln(

2
)2ln(

2
),;(ln

2

22 


 XYXY
nn

XYL   

By solving simultaneously the two ML equations 

        0),;(ln 2 


XYL
d

d
      and        0),;(ln 2

2



XYL

d

d
          

Then it is clear to obtain from above that:- 

            YXXX  1)(̂   …… (2.9)                                                             

 and      2ˆ
e e

n



     …… (2.10)                                                                               

A specific algebraic expression for the maximized likelihood )ˆ,ˆ;( 2XYL      

can be specified by substituting equation (2.9) and (2.10) into equation (2.8) 

and then simplifying; the resulting maximized likelihood function can be 

written in the form
 [11]

 

    2/22 )ˆ2()ˆ,ˆ;( neXYL  
   

…….  (2.11)                                   

 
2-1-4 Problems Concerning Linear Model 

  

 The accuracy of an estimated parameter basically depends on certain 

assumptions. If some of these assumptions are not met then the estimation of 

the parameters in the model will be unreasonable and will lead to inaccurate 

results and then to a bad model. The most important assumptions arenas 

mentioned in the ensuing subsections. 

2-1-4-1 Hetroscedasticity Problem: 

Hetroscedasticty usually occurs in most statistical studies especially in 

those that depend on sectional data. The dispersion of observations of such a 
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data relating to response variable may differ significantly among explanatory 

variables which result in the hetroscedasticity of the variance in the form:  

22

3

2

2

2

1 .... n   

To detect this problem test was used to test the following hypothesis: 

22

2

2

10 : nH                  (Homoscedasticity) 

vs.           :aH at least one of 
2

i does not equal zero. (Hetroscedasticity) 

To detection this problem several test can be use like (Breusch-pagan and 

Koenker-Basset , Goldfeld–Quandt , Park test,
 
White test) 

From the tests, the bruch-pagan  is used to detect the problem[33][70] 

Breusch-Pagan Test  

In statistics, the Breusch–Pagan test, developed in 1979 by Trevor 

Breusch and Adrian Pagan is used to test for heteroskedasticity in a linear 

regression model. It was independently suggested with some extension by R. 

Dennis Cook and Sanford Weisberg. It tests whether the estimated variance of 

their from a regression are dependent on the values of the independent 

variables. In that case, heteroskedasticity is present 

Steps to Find Breusch-Pagan and Koenker-Basset Test 

Define the matrix  to be composed of the values of the variables listed in the 

Breusch= option, such that z i,j  is the value of the jth variable in the Breusch = 

option for the ith observation. The null hypothesis of the Breusch-Pagan test is 

     
                                                    H0:a=0 

where  is the error variance for the ith observation and  and    are 

regression coefficients. 

https://en.wikipedia.org/wiki/Goldfeld%E2%80%93Quandt_test
https://en.wikipedia.org/wiki/Park_test
https://en.wikipedia.org/wiki/White_test
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Trevor_Breusch
https://en.wikipedia.org/wiki/Trevor_Breusch
https://en.wikipedia.org/wiki/Adrian_Pagan
https://en.wikipedia.org/wiki/Heteroskedasticity
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/R._Dennis_Cook
https://en.wikipedia.org/wiki/R._Dennis_Cook
https://en.wikipedia.org/w/index.php?title=Sanford_Weisberg&action=edit&redlink=1
https://en.wikipedia.org/wiki/Variance
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The test statistic for the Breusch-Pagan test is 

B.P = 
 

 
    ̅  

                ̅            

Where u=(  
    

    
    

 ),  is a n   vector of ones, and 

v= 
 

 
∑    

  
     

   

 
   

This is a modified version of the Breusch-Pagan test, which is less sensitive to 

the assumption of normality than the original test 
[57]

 

2-1-4-2 Autocorrelation (Serial Correlation) Problem: 

  The second problem arises as a result of violating one of the linear 

regression model assumptions, which is related to the behavior of the 

disturbance term ( i ); where   

   (       )                   

Autocorrelation is usually found among time series data rather than in grouped 

data when an error term in a period is related with another term before or after 

it. To detect this problem Durbin-Watson test was used.  

Durbin-Watson Test 

D.W 
∑   
            

 

∑   
   

  
 …….(2.13) 

Assumption for this test  

                                        H0 : ρ = 0 

H1 : ρ does not equal to zero 

where ei = yi – ̂ and yi and  ̂  are, respectively, the observed and predicted 

values of the response variable for individual i.d becomes smaller as the serial 
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correlations increase. Upper and lower critical values, dU and dL have been 

tabulated for different values of k (the number of explanatory variables) and n 

And we can say that we have don’t have this problem if  

If d < dL reject H0 : ρ = 0 

If d > dU do not reject H1 : ρ does not equal to zero 

If dL < d < dU test is inconclusive. 

Or 

D.L≤D.W≤4-D.L 

To solve this problem use Generalized Least Square, Cochrane-Orcutt Method 

or Iterative Method. 
[58] 

 

 

Figure(2-1) Show durbin watson test 

2-1-4-3 Multicollinearity Problem: 

    Often two or more of the explanatory variables used in the linear 

regression model produce redundant information. That is, the explanatory 

variables will be correlated with each other. In practice, it is not uncommon to 

observe correlations among the explanatory variables, since a few problems 

arise when serious multicollinearity is present in the regression analysis.
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Variance Inflation Factor (VIF) 

     As the name suggests, a variance inflation factor (VIF) quantifies how much 

the variance is inflated. But what variance? Recall that we learned previously 

that the standard errors  and hence the variances of the estimated coefficients 

are inflated when multicollinearity exists. So, the variance inflation factor for 

the estimated coefficient bk denoted VIFk  is just the factor by which the 

variance is inflated 

Let's be a little more concrete. For the model in which xk is the only predictor: 

yi=β0+βkxik+ei 

it can be shown that the variance of the estimated coefficient bk is 

Var(bk) 
  

∑        ̅  
  

   

   
 

    
 

 

Note that we add the subscript "min" in order to denote that it is the smallest the 

variance can be. Don't worry about how this variance is derived we just need to 

keep track of this baseline variance, so we can see how much the variance 

of bk is inflated when we add correlated predictors to our regression model. 

Var(bk)min  
  

∑         ̅  
  

   

 

VIF = 
       

          

 

= 
 

    
  

while VIFs exceeding 4 are signs of serious multicollinearity requiring 

correction
.[59]
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2-1-5 Test for Normality 

 Jarque Bera Test 

The calculation of p-values for hypothesis testing typically is based on the 

assumption that the population distribution is normal. Therefore, a test of the 

normality assumption may be useful to inspect. A variety of tests of normality 

have been developed by various statisticians. One of these tests will be 

described here. To start, the calculation of descriptive statistics is reviewed. A 

data set has the numeric observations: x1 , x2 , . . . , xn. Familiar descriptive 

statistics are the sample mean: 

  H0:The distribution of standard residual is very close to standard normal 

  H1:The stand and  residual are significantly different from the standard normal   

  
 

 
 

∑    
 
     ̅ 

  ̂   
……(2.14) 

EK=K-3 

JB=n  
   

 
 

     

  
 …..(2.15) 

It turns out that this test statistic can be compared with a χ
2
 (chi-square) 

distribution with 2 degrees of freedom. The null hypothesis of normality is 

rejected if the calculated test statistic exceeds a critical value from the  χ 
2 

distribution
[60]
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Chapter Two 

Section Two: Spatial Regression Model 

2-2-1    Introduction 

Spatial data refers to all types of data objects or elements that are present 

in a geographical space or horizon. It enables the global finding and locating of 

individuals or devices anywhere in the world.  

Spatial data is also known as geospatial data, spatial information or geographic 

information Spatial data consists of spatial objects made up of points, lines, 

regions, rectangles, surfaces, volumes and even data of higher dimension which 

includes time. Examples of spatial data include cities, rivers, roads, counties, 

states, crop cover ages, mountain ranges, parts in a CAD system, etc. Examples 

of spatial properties include the extent of a given river, or the boundary of a 

given county, etc. Often it is also desirable to attach non-spatial attribute 

information such as elevation heights, city names, etc. to the spatial data. 

Spatial databases facilitate the storage and efficient processing of spatial and 

non-spatial information ideally without favoring one over the other. Such 

databases are finding increasing use in applications in environmental 

monitoring, space, urban planning, resource management, and geographic 

information systems (GIS) (Buchmann et al. 1990, unther and Schek 1991). A 

common way to deal with spatial data is to store it explicitly by parametrizing it 

and thereby obtaining a reduction to a point in a possibly higher dimensional 

space. This is usually quite easy to do in a conventional database management 

system since the system is just a collection of records, where each record has 

many fields. In particular, we simply add a field (or several fields) to the record 
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that deals with the desired item of spatial information. This approach is fine  if 

we just want to perform a simple retrieval of the data. 

Generally speaking, spatial data represents the location, size and shape of an 

object on planet Earth such as a building, lake, mountain or township. Spatial 

data may also include attributes that provide more information about the entity 

that is being represented. Geographic Information Systems (GIS) or other 

specialized software applications can be used to access, visualize, manipulate 

and analyze geospatial data[61]. 

2-2-2  Spatial Regression Models 

      The spatial regression model worked as time Series but in it lag refers 

to any place or far between places and not to time as time series and in it we 

can show depend of explanatory variable for  depend variable where a place is 

neighbor or not and the models depend on weight matrix  and we can use the 

spatial regression models if we have spatial dependency
[68]

  

Spatial Cross-Sectional Models 

Our starting point is the linear-in-parameters cross-sectional model 

y =X    

with the error term u classical
[68]

 

2-2-2-1    Spatial Autoregressive Model (SAR) or (SLM) 

        Spatial autoregressive (SAR) model captures as well substantial spatial 

dependencies like external effects or spatial interactions. It assumes that such 

dependencies manifests in the spatial lag WY of the dependent variable Y. 

Regional growth may be fostered by growth in neighborhood regions by flows 

of goods for example. In this case, spillover effects are not restricted to adjacent 

regions but propagated over the entire regional system. In accordance to the 
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time-series analogue the pure spatial autoregressive model is also termed 

SPATIAL LAG model. In applications the model also incorporates a set of 

explanatory variables X1, X2, …, Xk. This extension is expressed by the term 

mixed regressive, spatial autoregressive model. In all instances OLS estimation 

will produce biased and of inconsistent parameter estimates. We will introduce 

the method of the maximum likelihood (ML method) as adequate estimation 

methods for that type of model. Because only the spatial lag Wy is relevant for 

the choice of an alternative estimation method to OLS, the term spatial lag 

model is often kept in cases where the model is extended by exogenous X-

variables 
[7]

 

Y = λWY + Xβ + e…..(2.16) 

Where 

e ~ N (0,σ
2 
In)  

Y: is a vector (n 1) for the observation depending variable. 

W: is the spatial weights (n n) matrix    

λ:parameter of spatial auto regressive regression model 

X: matrix (n  (k+1))  for the observation  explanatory variables 

β: is a vector  ((K+1)  1) Parameter required estimation  

e: is the  vector (n 1) for  error term 

In: is identity (n n)  matrix 

Value of   parameter of spatial regression model -1 < λ <1  if equal to 0 no have  

spatial correlation or (spatial dependency) and we go to classical regression 

model and if  λ>0  we have positive spatial correlation  and we can say the 

neighbor place is same with the other but if λ<0  we have negative spatial 

correlation and the neighbor is not same with other
[14]
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2-2-2-1-1 Maximum Likelihood Estimation for (SAR) Model 

[17][16][14]
 

Maximum likelihood estimation one of the most important ways because it gives 

the best estimate for parameter from among several possible estimates, when the 

time series data, in which the depend variable is different period of time, for 

example (Yt-1). Where it does not cause this variable "time" for any problems for 

OLS if there is not any time Series correlation for the residuals in the regression 

model. Is facing the use  estimate of least squares to estimate the spatial  model 

the problem show where  ε and WY is not  independent from other , so use 

(MLE) for spatial regression models first by (Ord 1975)  

Y = Xβ + λ WY + e……(2.17) 

Y=(I- λW)
-1

X β +(I- λW)
-1

 e 

e ~N(0, σ
2
) 

e=( I- λW)  Y) -X β 

Thus, the log likelihood function for y of the spatial lag model is obtained by 

adding the term ln |I-λW| to the log likelihood function of the standard regres 

sion  model   

Ln L(β, λ, σ
2
/Y,X)=

 2

n
Ln 2π –

 2

n
Ln σ

2
+ Ln|(I-λW )|- 

 

    

    ……(2.18) 

Where 

e=Y- λWY-X β….….(2.19) 

Putting equation (2.19)  in equation  (2.18)  we get get 

Ln L(β, λ, σ
2
/Y,X) =

2

n
Ln 2π –

 2

n
Ln σ

2
+ Ln|(I-λW )| -  

 

    
 ( Y- λWY-X β)'(Y- 

λWY-X β) 
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On account of this correction the MLE estimates will differ from the OLS 

estimates. They coincide for λ=0 where the spatial lag model approaches the 

standard regression model.  

In this step we get the derivative for β, σ
2
  in log of  likelihood  and equal to 

zero we get 

.(2.20)…..YA 'X 
1-

X) '= (X EMLb 

Let 

A=(I-λW) 

= (X' X)
-1

 X' (I-λW )Y 

= ( X' X)
-1 

X'
 
Y

 
–λ(X' X)

 -1 
X'

 
WY 

bO=       ( X' X)
-1 

X'
 
Y…...(2.21) 

                                     bL=(X' X)
 -1 

X'
 
WY……....(2.22) 

bMLE = bO – λ bL...(2.23) 

eMLE  =Y- λWY-XbMLE 

eMLE  =Y- λWY-X(bO – λ bL  )......(2.24) 

= Y-XbO- λ(WY-XbL) 

eO = Y – X bO....(2.25) 

                                             eL= WY – X bL.....(2.26) 

                                              e = eO – λ eL....(2.27) 

according the first order condetion the error variance can be esemaion by 
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σ
^2

MLE =  
     –           –     

 
......(2.28) 

bo: vector of the regression parameter  Y for X 

bL: vector of regression parameter  WY for X 

λ:parameter of spatial regression model 

eo: vector of  another regression model Y for X  

eL:  vector of  another regression  model WY for X 

by putting the value of(β
^
MLE σ

^2
MLE ) in to the likelihood function(2.23) we get 

LC= -n/2 Ln [ 
 

 
 (eo- λeL) ( eo - λeL)]+ln |I- λ W|……(2.29)    

2-2-2-2 Spatial Error Model (SEM): [63][64] 

One of the most important violations that plague regression model is the 

independence of the error term , so it will be studied with this model . It is 

assumed that the error or (model errors are linked spatially ) reversed the 

presumption of independence of errors. In the traditional model  and aims of 

this model spatial error model (SEM) to spatial error correction .  

Y = Xβ + u…..(2.30) 

u = ( I - θW )
-1

 e 

e ~ N(0,σ
2
 In) 

or we  can write 

Y = Xβ + ( I - θW )
-1

 e 

Where 

Y: is a vector (n  1) for the views depend variable. 

W: is the spatial weights (n n) matrix    

X: matrix (n  (k+1)) the observation of  explanatory variables 
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β: vector ((K+1)  1) Parameter required estimation  

In: identity ( n n) matrix  

θ :is the spatial parameter 

In: is identity (n n) matrix 

u: is  a vector of (n 1)  error term which spatial correlated 

 e: is a vector of (n 1) random error term 

  If      θ ≠ 0 we have a spatial dependency between the errors  for  neighbor 

observation but  if  θ=0   we go to the classic regression model and not have 

spatial dependency between errors for neighbor observation 

2-2-2-2-1   Maximum Likelihood Estimation for (SEM) Model: 

In spatial autoregressive model attention to (λ) it is parameter of 

autoregressive spatial regression model which reflects value  of spatial  effect   

from the nature of the spatial correlation between the depend variable values, 

and in the spatial error model attention to θ where show the correlation between 

the residuals 
:[12][13]

 

      Then the Maximum likelihood estimation for (SEM) model is : 

For this model  

Y = Xβ + u….(2.31) 

u = θWu + e 

or 

Y = Xβ + θWu + e 

And put the value of error in a likelihood function 
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L(β, θ, σ
2
/Y,X)=

2

n
Ln2π – 

2

n
Ln σ

2
 + Ln /I- θW / - 

 

   
[(Y-Xβ)'(I–θW)'(I–

θW)(Y-Xβ)]…..(2.32) 

In this step we get the derivative for β, σ
2
 in

 
 log of likelihood and equal to zero 

we get 

 

Y*= (I – θW) Y) and   X*=(I – θW)  X) 

bMLE= (  *X*
)
-1

   *Y*….(2.33) 

put  the value for X* an d Y*  we get 

bMLE = [  (X' (I – θW)' (I – θW) X ]
-1

  X' (I – θW)' (I – θW) Y   ]…..(2.34) 

e =Y-XbMLE 

σ
^2

MLE =    
    

 
.....(2.35) 

after putting the value of (σ
^2

MLE, β MLE) in likelihood function we get  

Lc= -n/2 Ln[
 

 
   (I – θW)' (I – θW)e]+ln/ I – θW/  ……(2.36) 

2-2-3  The General Spatial Model 

It is possible to combine the SAR and SEM models: 

y = λ W1y + u 

u =  θW2u + v 

where v is classical and both W1 and W2 are spatial weights matrices. (The 

description of this as The General Spatial Model is due to LeSage). One 

motivation for this is as follows: suppose we have estimated a SAR model. We 

then test the residuals for spatial autocorrelation using (say) Moran’s test. If we 
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cannot reject the hypothesis that the residuals are (still) spatially autocorrelated, 

then this model, which allows for both sources, may be appropriate 
[68]

 

2-2-4  Computational Considerations 

It is important to understand that there are real computational difficulties in the 

case where data represents many regions. For example, suppose we have data 

by US counties, of which there are about 3000 .=( 3  10
3
). Then W is a matrix 

of about 9  10
6
 (9 million) elements. Clearly it is going to be very difficult to 

work with arrays this size. However, it turns out that for this particular case (the 

US counties), and with a rook definition of contiguity, only about 12,500 

elements are non-zero (LeSage and Pace (2009)). (A county in Ohio will not be 

a neighbor of a county in California, or indeed of counties in most other states). 

So if we could just keep track of which elements are not zero, we could save 

considerable space. That is what sparse-matrix representations do. Instead of 

keeping track of the entire 

matrix, they record, for each non-zero element only, its row, its column, and its 

value. The result, for US counties, is that we need to keep track of only about 

37,500 ( = 12,500  3) numbers, rather than 9 million. Of course, for all this to 

be practically useful, we need routines to work with sparse matrix 

representations, to be able to multiply or invert them, without having to expand 

them into their full (“dense”) forms. 

A related problem is that even if  W can be represented as a sparse matrix, (I - 

λW) is not sparse and is also R R. However, note from the likelihood 

functions, that all we really need is the log determinant of(I- λ W) . and not .(I -

λW) itself. For small R one can compute the log determinant directly. For 

larger R one approach is to note that 

 

Ln|I- λW |=ln(∏         
   ) 
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where the   i are the eigen values of W which are specific to W and do not 

change as estimates of   change. The advantage of this is that the eigen values 

need to be computed only once. The disadvantage is that the computation can 

be time-consuming,even once: for example, Kelejian and Prucha (1999, 

footnote 12) report for a case of R = 1500 and with the average number of 

spatial neighbors (non-zero entries in a row) equal to 10, computing the eigen 

values took 22 minutes; however, this was on what is now considered very old 

and slow hardware. This slowness motivated a search for a method to compute 

the log determinant that did not need to compute the eigen values. Nowadays, 

with improved hardware and more RAM, this is less of a problem. Still, there is 

room for improvement: a popular approach is a Monte 

Carlo method due to Barry and Pace (1999).
[68]

 

 

 

              Figure (2-2) Show the relationship  between the  models 

relation between spatial models where depend on spatial parameters (λ, θ) wher 

λ=0 then not  have (SAR) model and where θ    not have (SEM) model and 

we go the classical regression (GLM) 
[30] 

. 

 

 

Y = λWY + Xβ + e 

Y = Xβ + ( I - θW )-1 e 

 

  XY
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2-2-5  Weight Matrix: 

It is square matrix which it elements positive value  and denoted by W and not 

necessary to be symmetric and create this matrix based on neighboring and 

relation neighboring from location for another location in same row in the  rows 

of  matrix and value for the diagonal usually equal to zero and chose weight 

matrix is very important  for  Determine the spatial effects so we must create a 

Appropriate weight matrix and there for some way to create this matrix
[62].

 

2-2-5-1 Binary Contiguity Weights Matrix: [63] 

The matrix is positive and square (n n) ,if  i,j contiguous wij= 1and if not 

contiguous wij =0 

 

 Wij         1    if i 
 
neighbour  j 

                                                0        otherwise 

 

2-2-5-2  Methods to Create Weight Matrix  

1. Rook Contiguity: 

The value of the element  that take  one  value  if the two areas neighbor  

by limited and have relation between the two area in any side and other is 

zero. This matrix is used so much than other  
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Figure (2-3) Show  the rook weight matrix 

2.Bishop Contiguity  

Neighbor  would occur  if the two areas connected  a point and this point 

is the connected limited between the two location is  smallest  connected 

limited and be the elements  value is equal to the one  and another element is 

equal to zero . 

 

                                Figure (2-4) Show the bishop weight matrix 
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 3.Queen Contiguity  

This matrix get its elements from the sum of (rook) and (bishopes) matrix 

elements and neighbor in this matrix is based on connect point or connect 

limited. 
[64]

 

 

                         Figure (2-5) Show the queen weight matrix 

For  find weight matrix Depend on figure method example 

 

           Figure (2-6) Show the example of the weighted matrix  
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1.Rook Contiguity 

                                         WR [

            
            
          
            

]    

2.Bishop Contiguity 

                                     WB     [

            
            
            
            

] 

3.Queen Contiguity 

                                                WQ   [

            
            
            
            

] 

 

2-2-5-3   Row - Standardized Weights Matrix: 

In this matrix sum of row equal to 1 and this matrix depend on (Binary 

Contiguity Weights Matrix)  
[64]

 

Wij
std   

=     
   

 ∑   
      i  neighbor j        0 <  Wij

std  
≤ 1 

                  0                  other wise 
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2-2-6    Tests for Spatial Regression 

 There are several tests to detect spatial dependence  and between these 

tests 

 

2-2-6-1    Moran’s Test: 
This test is measure to show that we have spatial dependemcy in data or not and 

it is a general measure and depends on the(GLM) model  [Y = X β + ε] it is 

(called Moran coefficient)because  Moran is the name of the Scientist that find 

the test.For measuring the similarity in neighboring phenomena , the idea 

depend on first  Geographic role (Tobler) in 1970  Which indicates that "the 

near things " more of a relationship of " long things " any phenomenon related 

to each other phenomenon , but the phenomena are more convergent than 

divergent relationship phenomena Overall spatial autocorrelation coefficient 

measures at the same time the extent of the similarity between the spatial 

elements and Describe Distinction  if value of  Moran coefficient near  1 that is 

mean Existing Spatial autocorrelation coefficient
.[1][3][70]

 

 

IM 
            

       
     

 

So = 


n

i 1  



n

j 1  
 ij  :sum of every element in W matrix 

W: weight matrix square (n n) matrix 

n: sample size  

e: vector Residual dimensions(n 1) 

where we using  row – standardized where sum of row equal to 1 in this case (n 

= So) that is work to simplify the above formula for the  follows 

 

IM 
      

      
……(2.37) 
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For now that value of Moran coefficient where it is  Indication of Statistics in   

certain Degree of confidence we must use Moran (z) test As shown below 

Hypotheses  test for Moran’s  

 Null hypotheses              H0: λ = 0, θ=0  no have spatial dependency  

Alternative hypotheses     H1: at least one of  λ ≠ 0    or θ ≠0 spatial dependency 

is exist   

  
               

√              
          

 

     
  (        ) 

      
……(2.39) 

 

       
                       (      )

 
 

             
 (    )

 
…..(2.40) 

 

M = I – X (X΄X)
-1

 X΄: it is Idempotent Matrix that is square and symmetric 

tr: Sum diagonal element 

k: Number of explanatory variables 

And now comparison value of calculate Z with value of Z table for(α, two sided 

test) where  Moran test is significant that is mean relation between geographic 

location that refers to use spatial regression model  and not  enough general 

linear model(GLM)and we have spatial dependency
[10]

 

2-2-6-2  Lagrange Multiplier(LM) Lag Test for (SAR) Model: 
 

 Test of Lagrange multiplier test is more use than Moran test because 

Moran is use only to test spatial dependency does Exist or not and we cannot 

now by Moran test what is the alternative model for (GLM) model but 
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Lagrange is tell we which is the model is alternative (SAR) or (SEM) and  

assumption for this test is 

 

Hypotheses  test for Lagrange  (SAR) model: 

 

                       H0: λ = 0      spatial dependence exist 

                       H1: λ at least one of the λ does not equal to 0 spatial dependence 

not exist 

Where reject null hypotheses is mean spatial dependence not  exist and  accept 

alternative  hypnoses where alternative  hypnoses is mean exist  spatial 

dependence  mean model alternative is (SAR) model  where it role  show in 

down and some time denoted by (LM-SAR) or      

    
 (
     

  
)
 

 
…..(2.41) 

  
                    

  
             …..(2.42) 

   
       

 
…..(2.43) 

  : Variance of error for general linear model regression  

We compare the calculate value with table value for χ
2
(1,α)after that we decide 

to the hypotheses
[2][10]. 
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2-2-6-3    Lagrange Multiplier (LM) error Test for (SEM) Model: 

Hypotheses test for Lagrange (SEM) model 

               H0: θ = 0               spatial dependence exist in error 

                   H1: at least one of the θ does not equal to zero 0        

 spatial dependence not exist  in error 

Where reject null hypotheses and accept alternative hypotheses that is mean 

spatial dependency does exist and alternative model is spatial error model 

(SEM) and the role is show in dawn where some time denoted by (LM-SEM) 
[2]

 

    
 (
       
  

)
 

 
          

                       T = tr [(w + w' )w  ]       5  

  :variance of error for general linear model regression 

Comparison between (  θ   λ) with value of  χ
2  

table by once degree 

freedom and once level significant  where Lagrange test for (SAR) or (SEM) 

significant or exist spatial dependency in each of them we must go to robust 

test  and robust role for (SAR) and (SEM)  model is 

       –      

 *[
    
  

]  [
    
  

]+

 

 

   
          

           
 *[

    

  
]  [

 

 
] [

    

  
]+

 

 

  [
  

 
]

……(2.47) 
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             ……(2.48) 

T = tr (w' w + w w ) 

Comparison each (           λ           θ) with table value for χ
2 

by 

once degree freedom and once level significant 
[2][15] 
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Table (2-1) Show the roles of test parameter in spatial regression models 

Test Formulation 
Table 

value 
Source 

MORAN 
IM 

            

       
     

 

 

N(0,1) 

 

Cliff and ord 

(1981) 

LM-SAR 

  λ  
 (
     
  

)
 

 
 

  
                    

  
              

   
       

 
 

 

χ 
2
(1,α) Anselin (1988) 

Robust 

LM-SAR 

       –      

 *[
    
  

]  [
    
  

]+

 

 

   
 

 

χ 
2
 (1,α) Anselin etal(1996) 

LM-SEM 
    

 (
       
  

)
 

 
 

χ 
2
 (1,α) Burridge (1988) 

Robust 

LM-SEM 
           

 *[
    
  

]   [
 
 
] [

    
  

]+

 

 

  [
  

 
]

 χ 
2
 (1,α) Anselin (1988) 
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Figure (2-7) Show the idea choose alternative spatial regression 

model  

 

 

 

 

Test after it 
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2-2-7   Comparison Criteria for Choosing the Best Model 

The choice of a particular model from a range of models style is an important 

aspect of the analysis of the data as it leads us to choose the best model , where 

the use of certain statistical criteria which are as described below 

2-2-7-1 Root Mean Squares Error: 

It is a square root of the sum of squares errors divided by the (n-k-1) is 

calculated for each models, the specimen which is the square root of the mean 

square value of the smaller mistakes is the best specimen . The formula for 

calculating this standard is
[10] 

      √
   ∑  (      )

     
    

     
      ……(2.49) 

2-2-7-2   Mean Absolute  Percentage  Error(MAPE):    

It is calculated by dividing the sum of the absolute value of the error on the real 

value divided by the number of Views (n) and the formula for calculating this 

standard is 
[10]

 

     
     

 
 ∑ | 

           

  
|  

    ……(2.50) 

And the smaller value is the best model 

2-2-7-3 Akaike  Information  Criterion(AIC): 

This standard introduced for the first time in 1973 , of the world (Akaike's), and 

this standard is equal to twice the number of parameters minus twice the 

maximum likelihood function of the observations and is expressed 

mathematically as the following 
[6]

 

                ……(2.51) 
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   L: Great value for the value of the logarithm (M.L.E) 

  K : Number for the parameters  of the model 

  It has been corrected Akaki criterion (AIC) , which takes the formula 

described in the below. It is worth mentioning that if the sample size was small 

((n / k)<40) it is better to use the standard debugger Akaki 

          
           

       
……(2.52) 

2-2-7-4 Adjusted Determinations of Coefficient     
                                          

The coefficient of determination R
2
 is not alone as a good indicator of how well 

the explanatory variables in explaining the values seen. And the value of the 

coefficient of determination increases with each additional variable falls within 

the specimen , so is calculated coefficient of determination average which 

enters into account the number of explanatory variable  s , and is calculated 

using the following formula 

    
    [

   (
  ∑  (      )

 
  

   
    

)  

(
  ∑  (     )

 
  

   
    

)

]…..(2.53) 

For comparison models the best model is the models which have bigger value 

[71]
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2-2-8-1   Fuzzy Set and Fuzzy Logic 

Fuzzy set is very convenient method for representary some form of uncertainty 

The idea of fuzzy logic was first advanced by Dr. Lotfi Zadeh of the University of 

California at Berkeley in the 1960s. Dr. Zadeh was working on the problem of 

computer understanding of natural language. Natural language (like most other 

activities in life and indeed the universe) is not easily translated into the absolute 

terms of 0 and 1. (Whether everything is ultimately descriable in binary terms is a 

philosophical question worth pursuing, but in practice much data we might want 

to feed a computer is in some state in between and so, frequently, are the results of 

computing)
[66]

. 

And fuzzy is a mathematical logic that attempts to solve problems by assigning 

values to an imprecise spectrum of data in order to arrive at the most accurate 

conclusion possible. Fuzzy logic is designed to solve problems in the same way 

that humans do: by considering all available information and making the best 

possible decision given the input 
[67] 

. 

2-2-8-2   Various Types of Membership Functions: Depending on the types of 

membership function different types of  fuzzy set will be obtained proposed a 

series of member ship functions that could be classified into two groups .those 

made up of start lines being “linear”  ones ,and the “cueved” or “non linear” . [65] 

we will now go on to look at some types of membership 

functions(Triangular,Singleton,L-Function,Gamma Function,Gaussian…...)  
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Figure (2-8) :Show  an example of a fuzzy logic 
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2-2-8-3   Steps for Find Fuzzy Data 

The following steps explain how the data converting to the fuzzy data by 

using the Gaussian membership function 

Step 1 :We  must   at first  test  the  data  for  normality  and   my  research  has  a  

normal  distribution  because  that  we  must  use  the   roll of  Gaussian  normal  

distribution 

Step 2: Find memberships by Gaussian member ship function 

Specified by two parameters {m, 
2
} as follows: 

Gaussian (x:       =  
  
       

   
 
 ….(2.54) 

Where Mean (     
∑    
   

 
 

And  

Variance(          
∑    
 
     ̅  

   
 

Step 3 :After find memberships by  this  role  multiple  memberships with variable  

(x)  which denoted by (Sy,Sx1,Sx2,Sx3) 

Step 4 : Find fuzzy Data 
[66][67]

 

 

Fx=
∑      
 
   

∑    
 
   

…..(2.55) 
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Chapter  Three 

Practical Part 

3-1  Introduction 

 This part covers the practical aspects of this thesis, applying the data practically to 

the traditional methods (OLS) and modern statistical Models SAR and SEM for 

estimating regression parameters using Raw data and Fuzzy data and comparing the 

results between different models. 

3-2  Description of the Data  

The data used in this thesis are taken from  Ministry Rough waters weather.The 

sample consists of (27) places (observations) (every observations are a yearly 

average ) about the (Atmospheric Pressure, Temperature degree, Relative Humidity, 

wind  Speed) of  Kurdistan Region(Sulaimaniyah,Erbil, and Dhouk) stations . 

Statistical analysis was applied to find the best model to estimate the Atmospheric 

Pressure (A.P) in Kurdistan region 

Atmospheric Pressure(A.P)(Y)  : Defined as the force per unit area exerted against a 

surface by the weight of the air above that surface.  

Wind Speed(W.S)(x1) :Is caused by air moving from high pressure to low pressure, 

usually due to changes in temperature. Wind speed affects weather forecasting, 

aircraft and maritime operations, construction projects, growth and metabolism rate 

of many plant species, and countless other implications 

Air Temperature (A.T)(x2): Is a measure of how hot or cold the air . It is the most 

commonly measured weather parameter. More specifically, temperature describes 

the kinetic energy, or energy of motion, of the gases that make up air. As gas 

molecules move more quickly, air temperature increases. 
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Relative Humidity(R.H)(x3): The amount of water vapor in the air, expressed as a 

percentage of the maximum amount that the air could hold at the given temperature 

the ratio of the actual water vapor pressure to the saturation vapor pressure 

A multiple linear regression model which is based on the data is expressed in the 

following form: 

                       3322110 iiiii XXXY       

Where 

iY Atmospheric Pressure (%) (A.P.)   

Xi1= Wind Speed (m/s) (W.S) 

Xi2= Air Temperature  ( C º) (A.T)                                                                

Xi3= Relative Humidity (%) (R.H) 

Thus,  

       .....(3.1)    .... 3210 iHRTASWPA    

In matrix notation model (1) can be expressed as  

                           ,  XY                                               

Where ),...,,( 2721
 YYYY  is an ( 127 ) observation vector, )3,...,,( 10

   is an (

14  ) vector of unknown parameters, X is an ( 427 ) matrix of full column rank and 

),...,,(
7221    is an ( 127 ) random error vector 
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3-3 Software:  

The following software and application used to analyze the practical  

Part of this thesis: 

1-Geoda 

2-Minitab 

3-Matlab 

4-Excel 

3-4   Regression Model for Raw Data 

In practice part we need the data and the table show raw data  for fit general linear 

model for raw data 

 

Table (3-1) Show the Raw  data 

Location\Stations A.P=Y(%) W.S=X1 A.T=X2 
R.H=X3 

(%) 

Bazian 9.2094 2.0607 19.6341 0.4619 

Darbandexan 9.5305 2.7335 22.8866 0.4054 

Dukan 9.4990 3.1633 21.6747 0.4324 

Halabjae shahid 9.4295 1.0000 21.4600 0.4106 

. . . . . 

. . . . . 

. . . . . 

Grdgan 9.4601 1.3017 20.5845 0.3375 

Xwrmal 9.4188 1.0750 12.0750 0.6705 
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The table below present the descriptive Statistics for the variables(response &      

explanatory) 

Table(3-2 ):Descriptive statistics for response and explanatory variables 

Variables A.P W.S A.T R.H 

Minimum 8.6312 0.8592 12.0750 0.2129 

Maximum 10.1490 3.1633 24.8731 0.6705 

Average 9.4075 1.7142 20.0776 0.4344 

Standard division 0.4220 0.6036 2.4886 0.0907 
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 Figure (3-1), the 27 stations of weather used in the analysis are shown on the      

map.Especially on the northern part (Kurdistan region) of  the Iraq. 

Figure (3-1) Show the Map of Kurdistan region 

Estimating and testing the parameter of the Model : 

The following tables explain the parameters estimated and testing 
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Table (3-3) Observed parameter and standard error for model I 

 

 

 

Model 

Unstandardized 

coefficients 

Standardized 

coefficients 

 

 

T 

 

 

Sig. 

P value B Std.Error Beta 

Constant 6.083 0.781  7.791 0.000 

W.S -0.196 0.101 -0.281 1.948 0.064 

A.T 0.121 0.027 0.712 4.501 0.000 

R.H 2.847 0.754 0.612 3.774 0.001 

 

Table (3-3) Show that the p-value  of wind speed (W.S) is greater than level of 

significant  (α = 0.05) this mean that  the explanatory variable (W.S) is not 

significant and the p-value of  other explanatory variables (A.T and R.H)  are less 

than  (α = 0.05) this mean that the explanatory variables (A.T and R.H) are 

statistically significant, so they remain in the model. To test the significant of the 

model,ANOVA table was made as follows:  

          Table (3-4) :ANOVA table for Model I using OLS Method 

    

 

 

 

Model 
Sum of 

Square 
D.F 

Mean 

Square 
F Sig. 

Regression 2.600 3 0.867 

9.815 0.000 Residual 2.031 23 0.088 

Total 4.632 26  
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In the ANOVA table, the corresponding P-Value is less than ( 05.0 ), then the null 

hypothesis was rejected, i.e., this means that the relationship between Atmospheric 

Pressure(A.P) with (A.T and R.H) are highly significant (under 05.0  ).  

                             Table ( 3-5) Summary table for model I 

R
2 

Adjusted R
2 

Durbin-Watson 

0.561 0.504 1.698 

                                 

Table (3-5) Shows that the adjusted R
2
 - value is 0.504 indicating that the 50.4% of 

the variation in Atmospheric Pressure has been explained by the regressors (A.T and 

R.H) 

 3-4-1 Test for Problem Econometric and Assumption of Regression    

Model 

3-4-1-1       Test of Normality 

Now consider testing for the standard residuals using jarque-Bera test  i.e 

      H0: The distribution of residual standard is very close to normal standard  

      H1: The standard residual are significantly different from the normal standard  

The null hypothesis 0H is not rejected if the P-value for jarque-Bera test is greater 

than 0.05 , otherwise rejects 0H  and fails to reject the alternative hypothesis aH . 

Table (3-6) Show test of normality 

Test D.F Value P-value 

Jarque-Bera 2 1.0108 0.6032 
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Table (3-6) Shows that the P-value for residuals using (jarque-Bera)test is 0.6032  

this value is greater than(α = 0.05), then we accept  the null hypothesis. This 

indicates that residuals are normally distribution. 

3-4-1 -2   Test of  Hetroscedasticity for Model I 

 Now consider to test the heteroscedasiticity brush-pagan&Konker-basset 

Test of hypotheses  

                      
222

0 21
:

keeeH                       (Homoscedasticity) 

               vs. :aH at least one of 
2

i does not equal zero. (Hetroscedasticity) 

     the result of the test showing in the table below 

Table (3-7) Diagnostics for heteroskadasticity random coefficients test 

Test D.F Value P-value 

Breusch-pagan 3 1.1553 0.7637 

Konker-Basset 3 1.7544 0.6249 

                   

Table (3-7) Show that the P-value of the test are greater than (α = 0.05),this indicate 

that the null hypothesis of  homogeny is accept or the data will not  have problem of 

hetroskadasticity  

3-4-1-3     Test of  Autocorrelation for Model I 

Now consider to testing the autocorrelation using the Durbin-watson test  

Test of hypotheses  
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H0 : ρ = 0 

H1 : ρ ≠ 0 

The table below show that the result of Durbin Watson test: 

Table (3-8) Show the interval accept for Durbin test 

Model  D.W D.U 4-D.U 

OLS 1.698 1.65 2.35 

 

 The value of  D.W statistical test is 1.698  then value is  between 1.65≤1.698≤4-

1.65=2.35 then the data has not the Auto correlation problem.The level of (D.W) is 

greater than (du=1.65) and less than(4-du) .This indicates that  there is not any  

serious  autocorrelation among the variables, and so the null hypothesis is accepted  

3-4-1-4 Test of  Multicollinearity for Model I 

Now consider to test the multicollinearity using the variance inflation 

factor 

Test of hypotheses  

                                                  H0: Xj Orthogonal 

H1:Xj  not orthogonal 

The table below show that the result of the variance inflation factor (VIF) 
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Table(3-9) Show  the test of Multicollinearity  

Collinearity Statistics 

Factors Tolerance Variance inflation factor 

Wind Speed 0.919 1.089 

Air Temperature 0.762 1.313 

Relative Humidity 0.725 1.379 

 

The output of Table (3-9) show that the (VIF) of the variables (W.S) and (A.T) and 

(R.H) are near to one, which indicate that there are no multicollinearity problem 

among the variables. 

3-4-2 Fitting  Linear Regression Estimation Using (OLS) 

Here, fitting multiple linear regression models is used to describe the relationship 

between the response variable and the explanatory variables.  

The fitted regression model is: 

Model I A.P= 6.083+0.121 A.T+2.847 R.H…..(3.2) 

 Starting with Figure (3-2) we notice that it indicates the existence of statistical 

evidence that the explanatory variables in the model are related to the expected value 

of the response variables 
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           Figure (3-2) Observed A.P versus Fitted Regression Mosel I 

3-5  Regression Model for Fuzzy Data 

In this step we must find fuzzy data and work in it and the table below show 

procedures for find fuzzy data 

Table (3-10 ) Show the procedures to calculate the  fuzzy data 

S S1 S2 S3 Sy Sx1 Sx2 Sx3 

0.895684 0.848092 0.9842442 0.955108 8.248689 1.747693 19.32472 0.441164 

0.958446 0.240355 0.5288830 0.950204 9.134444 0.657018 12.10432 0.385213 

0.97678 0.056068 0.8139055 0.999756 9.278422 0.177361 17.64112 0.432291 

0.998643 0.496652 0.8570393 0.966182 9.416701 0.496652 18.39204 0.396714 

0.38737 0.90816 0.7548803 0.993945 3.419005 1.797407 13.74734 0.42183 

0.564129 0.739755 0.1562069 0.916034 5.561818 1.614824 3.885357 0.363116 

0.970176 0.997496 0.8155506 0.995136 9.026164 1.752545 17.67038 0.423371 

0.941411 0.999529 0.9859780 0.687729 8.718251 1.694868 20.20844 0.352743 

0.346176 0.436036 0.6935224 0.993667 3.043825 1.086595 12.44766 0.441812 

0.999988 0.994338 0.8665812 0.837651 9.40536 1.76846 18.55302 0.318636 

0.964786 0.496652 0.8934368 0.945388 8.967189 0.496652 16.88254 0.439424 
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0.581035 0.813648 0.6850847 0.982287 5.210537 1.079311 12.27202 0.443556 

0.6261 0.981776 0.6826604 0.920557 6.145771 1.569291 15.19068 0.433875 

0.982764 0.984528 0.3697306 0.602063 9.168006 1.792633 6.125304 0.316565 

0.761348 0.998051 0.3219832 0.977436 7.399681 1.673227 7.671014 0.405651 

0.223636 0.695742 0.9976034 0.635273 2.26722 0.83489 20.20147 0.330869 

0.254262 0.366743 0.9139547 0.960978 2.569568 0.315093 19.31488 0.44205 

0.225475 0.512947 0.8310493 0.752964 2.285414 0.521497 17.94374 0.378553 

0.726084 0.460418 0.8138877 0.907144 6.585428 1.135419 15.04101 0.430401 

0.2137 0.97961 0.7877062 0.526547 2.168841 1.559213 14.46097 0.282843 

0.831862 0.997642 0.9971380 0.050861 7.612697 1.668773 20.20802 0.01083 

0.184265 0.985588 0.9082749 0.823257 1.590427 1.790872 17.24445 0.311036 

0.999501 0.711702 0.9604032 0.960835 9.389479 0.865666 18.60317 0.392743 

0.735064 0.640522 0.9379702 0.809818 6.671692 0.733014 19.66757 0.304059 

0.669431 0.294084 0.9952731 0.072177 6.044538 0.781869 20.22381 0.016338 

0.99227 0.791785 0.9794702 0.565301 9.386958 1.030666 20.1619 0.190784 

0.999645 0.57087 0.0056840 0.033858 9.415405 0.613685 0.068634 0.022702 

 

The table (3-10) show the applied role and step in equations (2.54) and (2.55)  wich 

in this step find  member ship and multiple it by raw data for find fuzzy data  which 

in this step by member ship find weight for every elements 
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The fuzzy data show as follows 

Table (3-11) Show the Fuzzy data 

LLllxl      

Location\Stationsc 

A.AaP 

A.P=Y(%) 

W      

W.S(X3)S 

A.T 

A.T=X2 

R.H= 

R.H=X3 (%) 

 
    

Bazian 9.370397 1.645115 20.21879 0.438435 

Darbandexan 9.378358 1.625695 20.24822 0.437307 

Dukan 9.36986 1.610828 20.17488 0.43891 

Halabjae shahid 9.362064 1.605953 20.10785 0.439273 

. . . . . 

. . . . . 

. . . . . 

Grdgan 9.439338 1.206726 20.5354 0.356308 

Xwrmal 9.41875 1.075 12.075 0.6705 

Mean 9.3504 1.5027 19.8192 0.4295 

Variance 0.0022 0.0163 2.4309 0.0034 

 

Table (3-11) show fuzzy data witch  found by the steps and in below do all test that 

applied for raw data 
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Table (3-12) Observed parameter and standard error for model II 

Model 

Unstandardized 

coefficients 

Standardized 

coefficients 
T 

Sig. 

P value 
B Std.Error Beta 

Constant 7.990 0.299  26.685 0.000 

W.S -0.321 0.087 -0.867 3.690 0.001 

A.T 0.059 0.014 1.942 4.341 0.000 

R.H 1.575 0.297 1.934 5.300 0.000 

      

Table (3-12) show the p-value of all variables explanatory variables are less than 

(α=0.05),this indicated  that those variables are more significant and remaining in the 

model 

Table (3-13) ANOVA table for Model II using OLS depending on fuzzy data 

 

 

 

 

 

 

In the ANOVA table, the corresponding P-Value is less than 0.05, the null 

hypothesis was rejected, i.e., this means that the relationship between Atmospheric 

Pressure and  W.S,A.T and R.H are highly significant (under 05.0  ).  

                                   

Model 
Sum of 

square 
D.F 

Mean 

square 
F Sig. 

Regression 0.034 3 0.011 

10.573 0.000 Residual 0.024 23 0.001 

Total 0.058 26  
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Table ( 3-14) Summary table for model II 

R
2 

Adjusted R
2 

0.580 0.525 

 

Table (3-14 ) shows that the adjusted R
2
 - value is 0.525 indicating that the 52.5% of 

the variation in Atmospheric Pressure has been explained by the regressors. 

3-5-1      Linear Regression Estimation Using (OLS) for Model II 

Here, fitting multiple linear regression models is used to describe the relationship 

between the response variable and the explanatory variables when we have fuzzy 

data.  

The fitted regression model is: 

Model II A.P= 7.990-0.321 W.S+0.059 A.T+1.575 R.H……(3.3) 

3-5-2    Regression Model with Raw and Fuzzy Data   

 The output in the table (3-15) show that the comparison between the regression 

model when using the Raw data and fuzzy data depending on some criteria or 

measure . 
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Table (3-15) Show the Regression model with  Raw and Fuzzy Data 

Regression 

model with 

 

R
2
 adj 

 

AIC C 

 

RMSE 

 

MAPE 

Raw data 0.504 14.7703 0.2971 0.00084 

Fuzzy data 0.525 -104.657 0.0325 0.00001 

 

Table (3-15) Shows that the comparison between the Regression model with Raw  

data and fuzzy data, the result show that the Regression model with fuzzy data is 

taken  the best result when we compared with regression model with  Raw data 

depending on some criteria or measures 

3-6     Test for finding Spatial Dependency for Raw Data 

 Moran’s  Test : 

Before construct create a model we must test the data for find spatial dependency of  

the data. 

The general test for spatially dependency is Moran test 
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Table (3-16) Show the Moran test of spatial dependency for  Rook,Bishop and 

Queen Matrices 

Weight Matrix (W) 

Rook Bishop Queen 

2.3119** 0.1332 2.3250** 

 

Based on Table (3-16) it could be seen that the value of Moran’s test using different 

weighted matrix rook, bishop and queen calculated and the value of test is greater 

than  Z 0.025 =1.96;thus,it can be conclude that the test is significant where we use the 

rook and queen matrix and  the otherwise is not significant when we use the Bishop 

matrix. If the test is significant meaning that the place has spatial dependency with 

each other 
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3-7     Spatial Regression Models with Raw Data 

3-7-1      Spatial Regression Models (SAR) 

3-7-1-1   SAR Model by using  Rook Matrix 

The table below shows the output of parameters estimation in SAR Model using the 

weight matrix rook. The positive spatial parameter (λ) indicated that the neighbor 

places is  similar from each others, and in classical regression model the variable  

wind speed is not significant while in SAR model  where using the rook weight  

matrix the variable  wind speed is not significant too.   

Table (3-17) Estimation the parameter of SAR model by using rook matrix  

 Weight Matrix- Rook(WMR) 

Model 
 

t- table t-calculate 
Std. 

Error 
Coefficient 

 

2.052 

8.2852** 0.7626      6.3189 (Constant) 

1.8635 0.09841 -0.1834 b1 

4.2335** 0.0262 0.1113 b2 

3.39906** 0.7369 2.5050 b3 

  0.0141  ( λ) 

The SAR model is estimated as: 

 ̂ = 6.3189+0.1113 b2+2.5050 b3+0.0141 λ…..(3.4) 

Where  λ is the average A.P in all neighboring countries, according to the weight 

matrix used, which is “ Rook” in this application. 
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The SAR model is estimated as: 

 ̂ = 6.0688 + 0.1221 b2+2.8149 b3+0.0047 λ……(3.5) 

Where  λ is the average A.P in all neighboring countries, according to the weight 

matrix used,which is “ Bishop” in this application. 

 

 

3-7-1-2   SAR Model by using Bishop Matrix 

The table below shows the output of parameters estimation in SAR Model using 

the weight matrix bishop. The positive spatial parameter (λ) indicated that the 

neighbor places is  similar from each others, and in classical regression model the 

variable wind speed is not significant while in SAR model  where using the 

bishop weight matrix only the variable  wind speed is not significant 

Table (3-18) Estimation the parameter of SAR model by using bishop matrix 

 Weight Matrix- Bishop(WMB) 

Model 
 

t- table t- calculate 
Std. 

Error 
Coefficient 

 

2.052 

7.7877** 0.7792 6.0688 (Constant) 

1.9840 0.1005 -0.1995 b1 

4.5587** 0.0267 0.1221 b2 

3.7381** 0.7530 2.8149 b3 

 
 0.0047 

 ( λ) 
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3-7-1-3   SAR Model by using Queen  Matrix 

The table below show the output of parameters estimation in SAR Model using the 

weight matrix queen.The positive spatial parameter (λ) indicated that the neighbor 

places is  similar from each others, and in classical regression model the variable 

wind speed is not significant while  in SAR  model where using the  queen weight 

matrix only  the variable  wind speed is not significant too.   

Table (3-19) Estimation the parameter of SAR model by using queen matrix 

The SAR model is estimated as: 

 ̂ = 6.4880 + 0.1096  b2+2.0739 b3+0.0240 λ…..(3.6) 

Where  λ is the average A.P in all neighboring countries,according to the weight 

matrix used,which is “ Queen”  in this application. 

 

 

 

 Weight Matrix- Queen(WMQ) 

Model 
 

t-table t-calculate 
Std. 

Error 
Coefficient 

 

2.052 

8.7855** 0.7384 6.4880 (Constant) 

2.0401 0.0952 -0.1944 b1 

4.3180** 0.0253 0.1096 b2 

2.9062** 0.7136 2.0739 b3 

 
 0.0240 

 ( λ) 
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3-7-2      Spatial Error Model (SEM) 

3-7-2-1   SEM Model by using Rook Matrix 

The table below shows the output of parameters estimation in SEM Model using the 

weight matrix rook.The positive spatial parameter (θ) indicated that the neighbor 

places is  similar from each others, and in classical regression model the variable 

wind speed is not significant while in SEM model where using the rook weight 

matrix only the variable wind speed is not  significant.   

Table (3-20) Estimation the parameter of SEM model by using rook matrix 

The SEM model is estimated as: 

 ̂ = 6.3462 +0.1096  b2+2.5834 b3+0.2763 θ……(3.7) 

Where  θ is the average  error of  prediction in neighboring countries of station 

i,according to the weight matrix used ,which is “Rook” in this application.  

 

 Weight Matrix-Rook(WMR) 

Model 
 

t- table t-calculate 
Std. 

Error 
Coefficient 

 

2.052 

8.0585** 0.7875 6.3462 (Constant) 

1.5736 0.1016 -0.1599 b1 

4.0529** 0.02706 0.1097 b2 

3.3948** 
0.7609 2.5834 

b3 

 
 0.2763  (  θ ) 
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3-7-2-2   SEM  Model by using Bishop Matrix 

The table below show the output of parameters estimation in SEM Model using the 

weight matrix bishop.The negative  spatial parameter (θ) indicated that the neighbor 

places is  not similar from the other, and in classical regression model the variable 

wind speed is not significant while in SEM model where using the bishop weight 

matrix only the  variable wind speed  is not  significant.   

Table (3-21) Estimation the parameter of SEM model by using bishop matrix 

The SEM model is estimated as: 

 ̂ = 6.0867 + 0.1206 b2+2.8453 b3-0.0096 θ….(3.8) 

Where  θ is the average  error of  prediction in neighboring countries of station 

i,according to the weight matrix used ,which is “Bishop” in this application.  

 

 

 Weight Matrix-Bishop(WMB) 

Model 
 

t- table t-calculate 
Std. 

Error 
Coefficient 

 

2.052 

7.7965** 0.7806 6.0867 (Constant) 

1.9526 0.1007 -0.1967 b1 

4.4945** 0.0268 0.1206 b2 

3.7716** 
0.7543 2.8453 

b3 

 
 -0.0096  (  θ ) 
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3-7-2-3   SEM Model by using Queen Matrix 

The table below show the output of parameters estimation in SEM Model using the 

weight matrix queen. The positive spatial parameter (θ) indicated that the neighbor 

places is similar from each others, and in classical regression model the variable 

wind speed is not significant while in SEM model  where using the queen weight 

matrix only the variable  wind speed is not  significant.   

Table (3-22) Estimation the parameter of SEM model by using queen matrix 

The SEM model is estimated as: 

 ̂ = 6.2555 + 0.1123 b2+2.6142 b3+0.2630 θ…….(3.9) 

Where  θ is the average  error of  prediction in neighboring countries of station 

disaccording to the weight matrix used ,which is “Queen” in this application.  

 

 

 

 Weight Matrix-Queen (WMQ) 

Model 
 

t-table t- calculate 
Std. 

Error 
Coefficient 

 

2.052 

7.9275** 0.7890 6.2555 (Constant) 

1.4526 0.1018 -0.1479 b1 

4.1407** 0.02712 0.1123 b2 

3.4284** 0.7624 2.6142 b3 

 
 0.2630  (  θ ) 
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    3-8 Tests for Finding the Best Model in Raw Data 

3-8-1     Lagrange Test for SAR (LM λ): 

This test is used for finding spatial dependency in spatial autoregressive 

model (SAR) 

Table (3-23) Lagrange test for SAR Model 

Test Weight Matrix (W) 

Rook Bishop Queen 

LM λ 7.4654** 0.086381 9.65248** 

Robust LM λ 6.7468** 0.087028 8.7016** 

 

In W rook: The values of the  two test (LM λ=7.4654, Robust LM λ=6.7468) are 

significant when we compared the value of the tests with the value of chi-square 

(1,α) degree freedom i.e χ 
2
 
 
(1,0.05)  =3.841 

In W bishop: The values of   the two test (LM λ=0.086381, Robust LM λ=0.087028) 

are non-significant when we compared the value of tests with the value of chi-square 

(1,α) degree freedom i.e χ 
2
 
 
(1,0.05)  =3.841 are not significant  

In W queen: The values of  the two test (LM λ=9.65248, Robust LM λ=8.7016) are 

significant when we compared  the value of tests with the value of chi-square (1,α) 

degree freedom i.e χ 
2
 
 
(1,0.05) =3.841 
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3-8-2     Lagrange Test  for  SEM (LM θ): 

This test is for finding spatially dependency in spatial error model  

                                  Table (3-24) Lagrange test for SEM  Model 

Test Weight Matrix (W) 

Rook Bishop Queen 

LM θ 1.203816 0.00027 1.035462 

           Robust LM θ 0.486513 0.000956 1.986976 

 

In table (3-24), the values of  the two test LM θ and robust LM θ according to the 

weight matrix rook, bishop and queen are not significant because the values of the 

two tests are less than the value of Chi-Square with degree of freedom χ 
2
 

 
(1,0.05) 

=3.841 we can concluded  that the SAR Model is better than the SEM model. 
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3-9 Calculate Different Criteria by Using SAR Model: 

After create a Model by using three types of weighted matrices and test it. For 

finding spatial dependency we must use same criteria for finding the best model  

Table (3-25) Show the calculate different criteria by using SAR Model 

 

 

 

 

 

 

 

Result and discussion: 

1- R
2
 adj  This measure is  based on the concept that how much variation in Y’s stated 

by Syy is explained by SSreg.In this thesis the value of  R
2
 adj in SAR  Model is a 

0.5468,0.5266 and 0.5747 respectively of the variation of the response variable is 

explained by the model according to weight matrices (rook,bishop and queen)and 

the best and good value in queen  weight matrix. 

2- AIC is a measure of the relative quality of statistical models for a given set of 

data. Given a collection of models for the data in  AIC C the best model is the 

smaller value because  in this thesis  the best model is SAR model according to the 

queen weight  matrix 

Criteria 

SAR 

 

Wrook Wbishop Wqueen 

R
2

adj 0.5468 0.5266 0.5747 

AIC C 3.941577 3.956096 3.920615 

RMSE 0.2903 0.2967 0.2811 

MAPE 0.000803 0.000837 0.000748 

https://en.wikipedia.org/wiki/Statistical_model
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3- RMSE is a measure used for differences between  the values (sample and 

population ) predicted by a model or an estimator and the values actually observed in 

RMSE the smaller value is better and in this thesis  the best model is SAR model  

according to the  queen  weight matrix 

4- MAPE is a measure of prediction accuracy of a forecasting method in statistics, in 

this measure the smaller value is better. In this thesis the best model is SAR  model 

according  queen weight matrices  

When we compare between the  models according to the  weight matrixes by some 

criteria or measures in all measures accept to select SAR model with weight matrices 

queen is best model by raw data. 

 

 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Statistics
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3-10    Test for finding Spatial Dependency in Fuzzy Data 

Moran’s Test: 

After construct (create) model we must test the parameters of the  model for find the 

spatial dependency of  the  Spatial parameter. 

Moran’s test  is The first and general test for spatially dependency   

Table (3-26): The test of spatial dependency for rook,bishop and queen 

matrices 

Weight Matrix (W) 

Rook Bishop Queen 

2.6600** 0.6990 2.7099** 

 

Based on Table (3-26) it could be seen that the value of Moran’s test using different 

weighted matrix rook, bishop and queen calculated and the value of test is greater 

than  Z 0.025 =1.96;thus,it can be conclude that the test is significant where we use the 

rook and queen matrix but the otherwise test is not significant when we use the 

Bishop matrix. If the test is significant meaning that the place has spatial 

dependency with each other 
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 3-11     Spatial Regression Models with Fuzzy Data  

3-11-1   Spatial Autoregressive Model (SAR) 

3-11-1-1   SAR Model by using Rook Matrix 

The table below shows the output of parameters estimation in SAR Model using the 

weight matrix rook. The negative spatial parameter (λ) indicated that the neighbor 

places is not similar from each others, and in classical regression model all 

coefficient  are significant while in SAR model   where using the  rook weight 

matrix  all the coefficient  are significant too.   

Table (3-2) Estimation the parameters of SAR model  by using rook matrix 

The SAR model is estimated as: 

 ̂ = 7.8610-0.3162 b1+0.0632 b2+1.6837  b3-0.0019 λ….(3.10) 

Where  λ is the average A.P in all neighboring countries, according to the weight 

matrix used, which is “ Rook”  in this application. 

 Weight Matrix-Rook (WMR) 

Model 
 

t-table t-calculate 
Std. 

Error 
Coefficient 

 

2.052 

95.1071** 0.0826 7.8610 (Constant) 

29.6482** 0.0106 -0.3162 b1 

22.2470** 0.0028 0.0632 b2 

21.0807** 0.0798 1.6837 b3 

 
 -0.0019 

 (   λ  ) 
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3-11-1-2   SAR Model by using Bishop Matrix 

The table below show the output of parameters estimation in SAR Model using the 

weight matrix bishop. The positive spatial parameter (λ) indicated that the neighbor 

places is similar from each others, and in classical regression model all coefficient  

are significant while in SAR model   where using the bishop weight matrix  all the 

coefficient are significant too.   

Table (3-28) Estimation the parameters of SAR model  by using bishop matrix 

 

The SAR model is estimated as: 

 ̂ = 7.9768-0.3204 b1+0.0594 b2+1.5740  b3+0.0007 λ……(3.11) 

Where  λ is the average A.P in all neighboring countries, according to the weight 

matrix used, which is “ Bishop”  in this application. 

 

 

 Weight Matrix -Bishop (WMB) 

Model 
 

t-table t- calculate 
Std. 

Error 
Coefficient 

 

2.052 

93.6133** 0.0852 7.9768 (Constant) 

29.1409** 0.01099 -0.3204 b1 

20.2822** 0.0029 0.0594 b2 

19.1161** 0.08233 1.5740 b3 

 
 0.0007 

 (   λ  ) 
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3-11-1-3   SAR Model by using Queen Matrix 

The table below show the output of parameters estimation in SAR Model using the 

weight matrix queen. The negative spatial parameter (λ) indicated that the neighbor 

places is  not similar from each others, and in classical regression model all 

coefficient  are significant while in SAR model  where using the queen weight 

matrix all the coefficient are significant too. 

Table (3-29) Estimation the parameters of SAR model  by using queen matrix 

 

The SAR model is estimated as: 

 ̂ = 7.9273 -0.3151 b1+0.0603 b2+1.6510  b3-0.0013 λ……(3.12) 

Where  λ is the average A.P in all neighboring countries, according to the weight 

matrix used, which is “ Queen”  in this application. 

 

 

 Weight Matrix-Queen (WMQ) 

Model 
 

t-table t-calculate 
Std. 

Error 
Coefficient 

 

2.052 

94.0284** 0.08430 7.9273 (Constant) 

28.9657** 0.0108 -0.3151 b1 

20.8099** 0.0028 0.0603 b2 

20.2659** 0.08146 1.6510 b3 

 
 -0.0013 

 (   λ  ) 
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3-11-2    Spatial Error Model (SEM) 

3-11-2-1   SEM Model by using Rook Matrix 

The table below shows the output of parameters estimation in SEM Model using the 

weight matrix rook. The positive spatial parameter (θ) indicated that the neighbor 

places is similar from each others, and in classical regression model all coefficient 

are significant while in SEM model where using the queen weight matrix all the 

coefficient are significant too. 

  Table (3-30) Estimation the parameters of SEM model  by using rook 

matrix 

The SEM model is estimated as: 

 ̂ = 8.1554 -0.2974 b1+0.0524 b2+1.4101  b3+0.3252 θ…..(3.13) 

Where θ is the average error of prediction in neighboring countries of station i, 

according to the weight matrix used, which is “Rook” in this application.  

 

 Weight Matrix-Rook (WMR) 

Model 
 

t-table t-calculate  
Std. 

Error 
Coefficient 

 

2.052 

94.4683** 0.08632 8.1554 (Constant) 

26.6983** 0.01113 -0.2974 b1 

17.6600** 0.00296 0.0524 b2 

16.9034** 0.08342 1.4101 b3 

 
 0.3252  (  θ ) 
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3-11-2-2   SEM Model by using Bishop Matrix 

The table below shows the output of parameters estimation in SEM Model using the 

weight matrix bishop. The positive spatial parameter (θ) indicated  that the neighbor 

places is similar from each other’s, and in classical regression model all coefficient  

are significant while in SEM  model where using the queen weight  matrix all the 

coefficient are significant too. 

Table (3-31) Estimation the parameters of SEM model  by using bishop matrix 

The SEM model is estimated as: 

 ̂ = 8.0255 -0.3299 b1+0.0577 b2+1.5766  b3+0.1349 θ….(3.14) 

Where  θ is the average  error of  prediction in neighboring countries of station i, 

according to the weight matrix used ,which is “Bishop” in this application.  

 

 

 Weight matrix-Bishop 

Model 
 

t-table t-calculate 
Std. 

Error 
Coefficient 

 

2.052 

93.3970** 0.08592 8.0255 (Constant) 

29.7539** 0.01108 -0.3299 b1 

19.5369** 0.0029 0.0577 b2 

18.9875** 
0.08303 1.5766 

b3 

 
 0.1349  (  θ ) 
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3-11-2-3   SEM Model by  using Queen Matrix 

The table below shows the output of parameters estimation in SEM Model using the 

weight matrix queen. The positive spatial parameter (θ) indicated that the neighbor 

places is similar from each others, and in classical regression model all coefficient 

are significant while in SEM model where using the queen weight matrix all the 

coefficient are significant too  

Table (3-32) Estimation the parameters of SEM model  by using queen matrix 

The SEM model is estimated as: 

 ̂ = 8.1781 -0.3149 b1+0.0518 b2+1.4449  b3+0.2754 θ……(3.15) 

Where θ is the average  error of  prediction in neighboring countries of station i, 

according to the weight matrix used ,which is “Queen” in this application.  

 

 

 

 Weight Matrix-Queen (WMQ) 

Model 
 

t- table t-calculate Std. Error Coefficient 

 

2.052 

94.2957** 0.0867 8.1781 (Constant) 

28.1393** 0.01119 -0.3149 b1 

17.3775** 0.00298 0.0518 b2 

17.2410** 0.08380 1.4449 b3 

 
 0.2754  (  θ ) 
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    3-12 Tests for Finding the Best Model in Fuzzy Data 

3-12-1     Lagrange Test for SAR (LM λ): 

This test is used for finding spatial dependency in spatial error model 

             Table (3-33): Lagrange test for SAR Model 

Test Weight Matrix (W) 

Rook Bishop Queen 

LM λ 11.1811** 0.1351 2.9363 

Robust LM  11.3219** 0.1334 2.9970 

 

In W rook: The values of  the two test (LM λ=11.1811, Robust LM λ=11.3219) are 

significant when we compared the value of the tests  with the value of chi-square 

(1,α) degree freedom i.e   2 
(1,0.05) =3.841 

In W bishop: The values of  the two test (LM λ=0.135137, Robust LM λ=0.1334) 

when we compared the value of the tests with the value of chi-square (1,α) degree 

freedom i.e  2 
(1,0.05) =3.841 are not significant 

In W queen: The values of  the two test (LM λ=2.9363, Robust LM λ=2.9970) when 

we compared the value of the tests with the value of chi-square (1,α) degree freedom 

i.e   2 
(1,0.05) =3.841 are not significant 
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3-12-2     Lagrange Test for SEM (LM θ): 

This test is for finding spatially dependency  in spatial error  model  

Table (3-34) Lagrange test for SEM Model 

Test Weight Matrix (W) 

Rook Bishop Queen 

LM θ 1.621807 0.15951 1.51688 

           Robust LM θ 1.78037 0.158977 1.468681 

 

In table (3-34), the values of  the two test LM θ and robust LM θ according to the 

weight matrix rook, bishop and queen are not significant because the values of the 

two tests is less than the value of Chi-Square with degree of freedom    2 
(1,0.05) = 

3.841 and in it we can concluded to that  the SAR is better than  the SEM Model. 
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3-13 Comparison Criteria with Fuzzy Data: 

After create a model by using three types of weight matrices matrix and test it. For 

find spatial dependency we must use same criteria for finding the best model  

Table (3-35) Show the Comparison  between the Models (SAR and SEM) using 

different criteria or measures  

Criteria 

SAR 

Wrook Wbishop Wqueen 

R
2

adj 0.5700 0.5416 0.5511 

AIC C 3.082785 3.090796 3.087871 

RMSE 0.03141 0.0324 0.0321 

MAPE 0.000001 0.00001 0.00001 

 

Result and discussion: 

1- R
2
 adj  This measure is  based on the concept that how much variation in Y’s stated 

by Syy is explained by SSreg.In this thesis the value of  R
2
 adj 0.5700,0.5416 and 

0.5511 respectively of the variation of the response variable is explained  by the 

model according to weight matrices (rook, bishop and queen) and the best value 

given in rook weight matrix. 

2-  AIC is a measure of the relative quality of statistical models for a given set of 

data. Given a collection of models for the data in AIC the best model is the smaller 

value because that in this thesis the best model is SAR model according to the 

weight matrices rook 

https://en.wikipedia.org/wiki/Statistical_model
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3- RMSE is a measure use for differences between the values (sample and 

population) predicted by a model or an estimator and the values actually observed in 

where the  RMSE smaller value is better and in this thesis the best model is SAR 

model according to the weight  matrix rook  

4-MAPE is a measure of prediction accuracy of a forecasting  or estimation method 

in statistics, and the best model is SAR according rook  weight matrix 

When we compare between the models according to the some  weight matrix  by the 

criteria or measures in all  measures accept to select SAR model with weight 

matrices rook . 

 

 

 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Statistics
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Table(3-36):Comparison  between the models using (Raw data) and (Fuzzy data) 

Result and discussion: 

1. Adjusted coefficient of determination R
2
 adj measure  is best in the SAR model 

according to the Queen weight matrices for the raw data. 

2. RMSE is another measure use to find the best model and worked in sample is 

better or not. The spatial regression model SAR is the best model according to the 

weighted matrices rook for fuzzy data. 

3. According to the AIC measure the best model is GLM  for fuzzy data because the 

GLM is lowest when we compared with the AIC of the Model 

4. MAPE  is a another measure use  to find the best model and find best estemation. 

The spatial regression model SAR is the best and good model according to the 

weighted matrices rook for fuzzy data 

 

Data 

 

Models 

 

Weight Matrix 

 

R2
adj 

 

AIC 

 

RMSE 

 

MAPE 

 

 

 

Raw Data 

GLM _ 0.504 14.7703 0.2971 0.00084 

SAR 

Rook 0.5468 3.9415 0.2903 0.000803 

Bishop 0.5266 3.9560 0.2967 0.000837 

Queen 0.5747 3.9206 0.2811 0.000748 

Fuzzy Data 

GLM _ 0.525 -104.657 0.0325 0.00001 

SAR 

Rook 0.5700 3.0827 0.03141 0.000001 

Bishop 0.5416 3.090796 0.0324 0.00001 

Queen 0.5511 3.0878 0.0321 0.00001 
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Finally. The best and good model surely in fuzzy data  according (RMSE,MAPE) it 

is the best and good by rook weight matrix and the best neighboring is in rook role 

weight matrix and not bishop and queen. 
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4 Conclusions and Recommendation 

4-1 Conclusions 

       After reviewing all the traditional and modern methods of estimating 

parameters of the regression model and used Information Criteria to produce 

the best fitted Model for A.P, the following conclusions are drawn 

1. The place that neighbor by role for rook or queen matrices will be significant 

in test for spatial dependency. In SAR model when use the rook and queen 

weight matrices the place of some stations of  Kurdistan region  are dependent 

spatially and the effect of air temperate , relative humidity and wind speed on 

response variable Atmospheric pressure are similar too. 

2. The most appropriate model is SAR model for queen weighted matrix with 

un fuzzy data but in fuzzy data the best appropriate model is SAR model for 

rook weighted matrix. 

3. The explanatory variable wind speed is not significant in classic regression 

and spatial regression  for Raw data but the variables air temperate and relative 

humidity are significant and for fuzzy data all parameters are significant in both 

models classical and spatial regression  

4. Spatial regression with fuzzy data is more efficient than spatial regression 

with un fuzzy data and the regression model with fuzzy data is better than 

regression model with un fuzzy data. 
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4-2   Recommendations 

The researcher recommends the following points: 

1.Use this models in any domain of life such as the  cancer disease according to 

places or study the  rank of university according to the place and decide which 

university is most efficient than  the others . 

2. Use another type of weight matrix instead of rook bishop and queen such as 

linear weight matrix for finding the neighbor places. 

3. Calculate the parameters by use the panel model that relation between time 

and place when use the panel data the researcher can work in time and place at 

once. 
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Appendix B: Matlab Code 

Appendix B1 : Matlab Code for Find Spatial Parametr and 

Concentrated Likelihood Function For SAR Model 
  

n = 27; 

eO =[ input eO ]; 

eL = [ input eL]; 

eOt = eO'; 

eLt = eL'; 

I27 = eye(27); 

W =[input weight matrix]; 

x=-1:0.0001:1; 

LC=x; 

rho=-0.9999; 

for j=1:20000 

    if j<10000 

. 

. 

. 

. 

     

            LCmax=LC(1); 

        end 

        if LC(j)>LCmax 

            rho=d; 

            LCmax=LC(j); 

        end 

end 

     

    plot(x,LC) 

    grid on; 

xlabel(' \rho'); 

ylabel('ln L( \rho)'); 

'rho = '; rho;'ln Lc(rho) = '; Lcmax 
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Appendix B2 : Matlab Code for Find Spatial Parametr and 

Concentrated Likelihood Function For SEM Model 
  

n = 27; 

eO =[ input eO ]; 

eL = [ input eL]; 

eOt = eO'; 

eLt = eL'; 

I27 = eye(27); 

W =[input weight matrix]; 

x=-1:0.0001:1; 

LC=x; 

rho=-0.9999; 

for j=1:20000 

    if j<10000 

. 

. 

. 

. 

.            LCmax=LC(1); 

        end 

        if LC(j)>LCmax 

            rho=d; 

            LCmax=LC(j); 

        end 

end 

     

    plot(x,LC) 

    grid on; 

xlabel(' \rho'); 

ylabel('ln L( \rho)'); 

'rho = '; rho;'ln Lc(rho) = '; Lcmax 
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Appendix B3:Table show the value of(eo,eL) 

 

Raw Data Fuzzy Data 

eL rook eL bishop eL queen eo eL rook eL bishop eL queen eo 
3.7504 7.5828 2.5046 -0.1550 2.0683 8.3891 1.5435 0.0282 

-5.8695 8.0950 2.5894 0.0662 -7.2512 8.4004 1.6593 0.0300 

3.5044 -1.9455 1.9342 0.1885 2.2171 -1.0430 1.7013 0.0185 

2.6281 -0.3321 2.9969 -0.2175 2.3771 -1.1045 1.7944 0.0125 

5.5068 -2.0433 4.2896 -0.2756 2.3831 -1.1583 1.6884 0.0150 

-7.4810 -0.0982 -7.2974 0.0725 -7.1813 -1.0949 -7.7442 0.0161 

2.3952 -0.9076 2.0547 -0.2620 2.1844 -1.1500 1.6206 -0.0137 

-7.8235 -1.7876 -9.0468 -0.4244 -7.0334 -1.2299 -7.6688 -0.0114 

-3.7412 -2.6168 -5.6015 -0.2343 -6.7371 -1.2586 -7.3875 0.0002 

4.3759 -0.6928 4.3243 0.0034 2.5001 -1.1833 2.0243 0.0012 

3.2053 -1.4286 2.6233 -0.1972 2.4707 -1.2769 1.9285 -0.0097 

-4.9485 -1.8503 -5.8968 -0.3035 -7.0303 -1.1962 -7.5226 0.0030 

1.2508 -0.9377 0.7956 0.0179 2.0621 -1.0771 1.6864 0.0269 

4.2403 -3.0836 2.0147 0.1058 2.5377 -1.1905 2.0286 0.0083 

1.9213 -0.1651 2.1677 -0.0931 2.6655 -1.0865 2.3660 0.0076 

1.4159 -1.5610 0.4941 0.3626 2.8454 -1.2018 2.4535 -0.0328 

2.4053 -0.6586 2.4320 0.3302 3.2033 -1.1976 2.7450 -0.0359 

1.1986 -0.9270 0.8457 0.2141 3.7113 -1.2832 3.0535 -0.0398 

4.5513 -2.6476 2.5826 -0.1115 4.7446 -1.4142 3.8054 -0.0257 

3.0580 -2.4873 1.2958 0.6324 5.3728 -1.2867 4.7607 -0.0082 

-0.4243 0.1837 0.7158 0.3433 -3.1023 -1.0796 -3.4220 -0.0244 

-3.4313 -1.3940 -3.9849 -0.4633 -3.0610 -1.1346 -3.3413 -0.0205 

4.0842 8.3502 4.0385 0.0473 5.8897 8.4524 6.1998 -0.0466 

-5.3124 -0.3376 -4.8839 -0.3829 -3.0745 -0.6554 -2.5444 -0.0485 

0.1141 -0.5876 0.3338 0.3700 -1.8477 -0.7449 -1.6682 0.0752 

-3.9926 -0.3024 -3.4705 0.1861 -2.2946 -0.7782 -1.5018 0.0673 



 

 

 

 

 

 

 

 

 

 

 

 

 



 المــمــدــص

لتي تظّس عٍدوا يكىُ وا ,ىاديُ بين المشاِدات)الحًصٍ( طسيقُ لحطاب الاعتنحداز المكاٌٌالا

 يؤدٍ الظاِسَ تحمًن في الحًصٍّ العاون تاثير المكاُ  اواِتىاً .شازك في فضاء بٍقطُ  أو المطافُالمشاِدات و

 المكاُ عاون بتضىين تطىح التي السياضًُ الٍىاذجاد يجايجب   رال .َالصوعَ  بدلااََ  وّىُ وعمىوات ايجاد  الى

 وجىد ظن في لاضتجابُا المتغير عمِ التىضًخًُ المتغيرات تأثير تىضح التي الحًصٍ الانحداز نماذج ٌِ والتي

 وتغيرات  تاثير في بحجٍا يتي دزاضُ. ُبالٍطبُ الٌ قاٌىُ وصىفات الىش.المتجاوزَ لمىىاقع الحًصيُ التأثيرات

 .ط الجىٍ غض  ضتجابُالا المتغير (عمٌالسياح ضسعُ)ٌطبُ السطىبُ,دزجُ حسازَ,التىضًخًُ

 الانحداز نماذج و طمًىاًٌُ,أزبًن و دِىك(الفي اقمًي الكسدضتاُ) تأو المحطا قعاوى 72 وَ تالبًاٌات جمع 

 (SAR) الحًصٍ الراتٌ الأنحداز اذجنم وتم اضتدداًىاقع امجااوزَ.الماد تأثير يجلايطتددً  الحًصٍ

 العاً الخطٌ الانمىذج اضتددوتو الحًصيُ، عاون وٍّا كن تضي والتي (SEM) الحًصٍ الخطأ وأنمىذج,

(GLM)   الخطأ وسبعات لمتىضط الجرزالتربًعٌ :وجن لمقازٌُا اييرتدداً وعاض تمو  ( RMSE ) ووتىضط 

R)  ,المعده التخديد ووعاون ،( MAPE)  لمدطأ المطمقُ الٍطبُ
2
adj ) أكاكٌ ووعًاز  ( AIC .)  لاختًاز

ن يجاد افضلا  لاكساٌج اضتدداً اختباز اختبازات وىزاُ واد الاعتىاد الحًصٍ تم اضتدداً يجلا و أفضن نمىذج 

 queenو rook,bishop ُوع ثلاثُ اٌىاع وَ المصىفات المىشوٌ  (SEMوSARين )نمىذج  ب

 الانحداز نماذج تحمًن ٌتائج كاٌت ، التطبًقٌ الجاٌب في التخمًن أجساء بعد الاضتٍتاجاتاِي  ووَ   

 راتٌ الحًصٍ النحداز الا نمىذجوعمىات  اُ . العاً الخطٌ الانحداز أنمىذج تحمًن ٌتائج وَ افضن ٌِ الحًصٍ

(SAR) ًوصفىفتين باضتددا  queen  وrook  ٍوتطبًق  ُالٌ بًاٌات المضببن البًاٌات يتحىعٍد و .وعٍى

  وقايظ وعايير او بأعتىاد عمٌ لدىىعُ وَ الٍىاذج وِره وقازٌُ بين  عٍد  و GLMوSAR , SEM الٍىاذج

R وجن
2
adj,,RMSE,MAPE,AICC ظّس ٌتائج اُ تحىين البًاٌات الٌ بًاٌات المضبب و 



ن وَ الانحداز الحًصٍ بدوُ أفضالبًاٌات المضبب داز الحًصٍ وع الانح واُ الخاً يكىُ افضن وَ البًاٌات 

ىشوُ باضتدداً وصىفُ ال  SARالانحداز الراتٌ الحًصٍ ٍىىذجال ِى الافضنٍاضب و الم التخىين و الٍىىذج 

rook  الجاٌب التطبًقٌ  ِى  ّس في تحمًن وَالتي ظوٍاضب  نمىذج .وأخيرا 

 -:كالاتٌ وَ البًاٌات  الخاً   queen  الىشُتٌ الحًصٍ باعتىاد عمٌ وصىفُ  الرا  نحدازالٍىىذج الا

 ̂ = 6.4880 +0.1096  A.T+2.0739R.H+0.0240 λ 

 -:كالاتٌ  وَ البًاٌات  المضبب  rook  الىشُتٌ الحًصٍ باعتىاد عمٌ وصىفُ   راالنحداز الاالٍىىذج 

                       ̂ = 7.8610-0.3162W.S+0.0632 A.T+1.6837 R.H- 0.0019 λ 
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 ة ـتـوخــث

وةةرتيَك بوون  نةبيَت   ِييَةةيةةة بوَ ةةمورِةدنن  ثبةةتن  لة نيوَنى بةشانِبونىي شوَينَيليذَبوونةوة

ةرِيةةِي شويَو يرى ثرِنويتةِي ننى بة  نة طد.يروبةش بو بةشيَوةي خرهَ يرى نووِي  ةة ةةم ةرِةةةتةِننة

لةبةِ  .تريةةت بة شويَو لة شيكدننةوةي نيرِنةيةك نةبيَتة يوَي نةتت ةةوتني زننيرِي طدنط لةجيرت  ةرت 

ني تير بةةرِ يرتبيَ ةة ةةورنةش  شويَ ثرِنويتةِي ةة باوَزِيَتةوةووَنيَميكَ  بيرةرِيرنة ةةم يوَةرِة ثيوَيستة 

ِيووى     شويَو ةة لةم ووَنيَلانةنن ِووى ةدننةوة ةةنِيَ لةتةِ ةرِيةةِي طوَِينوةةرن ةرنو بةثيَليذَبوونةوة

بةثيَ   بةبون  ةرِيةةِي ةةو شويَهرنةي نِنوتيَ   يةةو   طوَِينوةةرن  ثبت بةتت لةتةِ  ةدننةوة )تةِبةتت(

يرتووة ةة ةةوننيش )ِييذَةي ش َ,  بةةرِ   طوَِينوي تةِبةتت .لةم تويذَيهةوةيةنن ت َ يرتري ورتديكس  يروتةنةة

 . ثرلَة ثةتتوَي يةون( )ةة بديتية  طوَِينوي ثبت بةتت بر( لة بةِنوةةِ خيدَنيثمةي طةِو ,

 ة وك(و نيوَ يةوليدَ , تميىَرن يةِيىَ  ةوِنتترى ) لة يرى ويَستةةشويَو  72وة ننترةرى ةوَةدنوةتةوة لة 

ي خوَي  شويَو ليذَبوونةوة .رنةي ةة نِنوتيَوشويَهةةو ةرن  شويَو بةةرِنيتَ بوَ نوزَيهةوةي ةرِيةةِي ليذَبوونةوة

(SAR)  ي يةلَةي شوَيوليذَبوونةوةوة (SEM ) ي ليذَبوونةوةوة ةةيةِنوةيرى ثرِنويتةِي شوَنيرى تيَانية

R)وة بةةرِييَهرن  يةنايَك ثيوَةِي بةِنوِن . (GLM)طبتي 
2
 adj,,RMSE,MAPE,AICC)  َبو

ة بوَ نيرِيكدنن  وة بوَنوزَيهةوةي ةرِيةةِي شويَو ثبكهيني ووَِنى بةةرِيرتووة و .نيرِيكدنن  برشتريو ووَنيَن

لةطةهَ ت َ جوَِ لة ورتديكس   ثبكهيني لاةدننج بةةرِيرتووة ( SAR,SEM) برشتريو ووَنين لة نيوَنى

  queenو   rook, bishopيروتةنط 

بة ثيَ  شويَو برشترة وةك لة  ليذَبوونةوةةةوةية ةة لة بةش  ثدنةتيكيان ةة ةةو ةةنجرورنةي طدنةتريووة لة

قةووهَ   queenو   rook بوَ ورتديكسةةرن   (SAR)  ي ةرت  خوَي ليذَبوونةوة.  ي طبتي ليزبوونةوة

 SEMو GLM,SARوة جيَةةجيَكدنن  ووَنيَمةةرن   لوَجيك  تةوروينةةديتَ وة لة وةِطيدَينن  ننتر ةةنن بوَ 

Rوة بةِنوِن ةدنى لةنيَوننيرنان بة يةنايَك ثيَوةِي )
2
 adj,,RMSE,MAPE,AICC ) ةةنجروةةرى وة



ي ليذَبوونةوةوة  )تةوروي(برشترة لة ننترةة بةب َ فةزي )تةوروي(وةِطيدَينن  ننتر ةة بوَ فةزيثبرن  نةنةى ةة  

و طونجرو  وة برشتريو )تةوروي( ي شويَني بةب َ فةزيليذَبوونةوةننتر برشترة وةك لة  )تةوروي(شوينَي بة فةزي 

 بة ثيَ  ننتري فةزي)تةوروي( rookبة بةةرِييَهرن  ورتديكس  يروتةنة     SARلة  تديو ووَنين بديتى ية

 بةش  ثدنةتيك  بديتيية لة  ثبكهيهةةرن  .لة ةةنجروان نةِنةةةويَت برشتريو و طونجروتديو ووَنين بةثيَ 

 يلة طةهَ ننتري بهةِيةتان: queenورتديكس  يروتةنة   ى  بةثَ SAR  شوينَي  ي خؤيليذَبوونةوةووَنيَم  

 ̂ = 6.4880 +0.1096  A.T+2.0739R.H+0.0240 λ 

 :نن )تةوروي( فةزي لة طةهَ ننتري rookورتديكس  يروتةنة   بةثَ  ى SARشوينَي خؤي  ي بوونةوةليذووَنيَم  

                   ̂ = 7.8610-0.3162W.S+0.0632 A.T+1.6837 R.H- 0.0019 λ 

 

 

 



 

لًَذبىونُوَ بُثًٌَ  و بُراورد كزدى لُ نًىَاى تُكهًكٌ لًَذبىونُوٍَ كلاسًكٌ
 شىيَو بُ بُكاريًَهانٌ لىَجًكٌ فُسٍ )تُماوٍ(

 

ئُم نامُيُ ثًَشكُشُ بُ                                                               

 بُ دَست يًَهانٌ تًُكانٌوَك بُشًكَ لُ ثًدَاويس سانكىٍَ سمًَمانٌ  باسرطانٌئُنجىمُنٌ كىَلًجٌَ 

ئامار سانستي  ماستُر لُ ثمٍُ  

  

 لُ لايُى

رَِحًم  شُم  ئاساد  

 

 بُسُرثُرشتي

ٍ ياريدَدَرثزوفًَسىَر  

حسًوَ د.محمد محمىد فقٌ   
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